24 October 2012 Lioneutrino 2012 - Lyon

DMV: neutrinos from DM Marco Cirelli (CNRS IPhT Saclay)

Based on:

Cirelli, Fornengo, Montaruli, Sokalski, Strumia, Vissani, Nucl.Phys. B727 (2005) 99-138, Erratum-ibid. B790 (2008) 338-344 [hep-ph/0506298]

> Cirelli, Corcella, Hektor, Hutsi, Kadastik, Panci, Raidal, Sala, Strumia, JCAP 1103 (2011) 051 [1012.4515]

24 October 2012 Lioneutrino 2012 - Lyon

DMV: neutrinos from DM Marco Cirelli (CNRS IPhT Saclay)

Based on:

Cirelli, Fornengo, Montaruli, Sokalski, Strumia, Vissani, Nucl.Phys. B727 (2005) 99-138, Erratum-ibid. B790 (2008) 338-344 [hep-ph/0506298]

> Cirelli, Corcella, Hektor, Hutsi, Kadastik, Panci, Raidal, Sala, Strumia, JCAP 1103 (2011) 051 [1012.4515]

Basics: 1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Status:

1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Conclusions

DM exists

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

'precision cosmology' (CMB, LSS)

DM exists

galactic rotation curves

^{&#}x27;precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

DM exists

galactic rotation curves

weak lensing (e.g. in clusters)

^{&#}x27;precision cosmology' (CMB, LSS)

DM is a neutral, very long lived, feebly interacting particle.

Some of us believe in the WIMP miracle.

- weak-scale mass (10 GeV 1 TeV)
- weak interactions $\sigma v = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$

- give automatically correct abundance

direct detection

Xenon, CDMS, Edelweiss... (CoGeNT, Dama/Libra...)

production at colliders

Y from annihil in galactic center or halo and from synchrotron emission Fermi, ICT, radio telescopes...

\indirect e

from annihil in galactic halo or center PAMELA, Fermi, HESS, AMS, balloons... from annihil in galactic halo or center

from annihil in galactic halo or center GAPS

 $\nu, \bar{\nu}$ from annihil in galactic center or halo or in massive bodies (Earth or Sun)

SK, Icecube, Km3Net

direct detection

production at colliders

direct detection

production at colliders

Y from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes

\indirect

from annihil in galactic halo or center PAMELA, ATIC, Fermi from annihil in galactic halo or center

from annihil in galactic halo or center

V, v from annihil in galactic center or halo or in massive bodies (Earth or Sun) SK, Icecube, Km3Net

direct detection

production at colliders

Y from annihil in galactic center or halo and from synchrotron emission Fermi, HESS, radio telescopes

\indirect

from annihil in galactic halo or center PAMELA, ATIC, Fermi from annihil in galactic halo or center

from annihil in galactic halo or center

v from annihil in galactic center or halo or in massive bodies (Earth or Sun) SK, Icecube, Km3Net

Basics: 1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Status:

1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Conclusions

$\frac{\text{Indirect Detection}}{\nu \text{ from DM annihilations in galactic center}}$

Indirect Detection v from DM annihilations in galactic center

What sets the overall expected flux? ${ m flux} \propto n^2 \, \sigma_{ m annihilation}$

Indirect Detection v from DM annihilations in galactic center

What sets the overall expected flux? $\begin{array}{l} \mbox{flux} \propto n^2 \\ \mbox{astro}^2 \\ \mbox{astro}^2 \\ \mbox{particle} \end{array}$

$\frac{1}{\nu} \text{ from DM annihilations in galactic center}$

What sets the overall expected flux? flux $\propto n^2 \sigma_{\text{annihilation}}$ astro& $\sigma_{v} = 3 \cdot 10^{-26} \text{cm}^3/\text{sec}$

DM halo profiles

At small r: $\rho(r) \propto 1/r^{\gamma}$

6 profiles: cuspy: NFW, Moore mild: Einasto smooth: isothermal, Burkert EinastoB = steepened Einasto (effect of baryons?)

simulations:

DM halo	α	$r_s \; [\mathrm{kpc}]$	$\rho_s \; [{\rm GeV/cm^3}]$
NFW	_	24.42	0.184
Einasto	0.17	28.44	0.033
EinastoB	0.11	35.24	0.021
Isothermal	_	4.38	1.387
Burkert		12.67	0.712
Moore	_	30.28	0.105

Indirect Detection: basics

 $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \nu.$

primary channels

 $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \nu.$

Indirect Detection: basics DM

 $W^-, Z, b, \tau^-, t, h \dots \longrightarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \nu.$ decay

primary channels

DM

 $\cdot W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \nu.$

Indirect Detection: basics

 \overline{p} primary spectra

Indirect Detection: basics

- 1. Dark Matter mass
- **2.** primary channel(s)
- 3. annihilation cross section σ_{ann}

ElectroWeak corrections are important!

ElectroWeak corrections are important!

-.e+

DM

DN

ElectroWeak corrections are important!

 $q\bar{q}$

ElectroWeak corrections are important!

.e

 DM^{\bullet}

 $D\Lambda$

ElectroWeak corrections are important!

· e7

DM

 $D\Lambda$

ElectroWeak corrections are important!

Ciafaloni et al., JCAP 1103 (2011) See also: Serpico et al., Bell et al.

 $\bar{q} \longleftrightarrow^{P}_{\pi^{0} \rightsquigarrow \gamma \gamma}$ $\nu \bar{\nu}$ $\pm \bar{\nu} e^{\pm} \nu \bar{\nu}$

ElectroWeak corrections are important!

DM

 $\frac{\Delta\sigma}{\sigma} \propto \alpha_{\rm weak} \ln^2$

ElectroWeak corrections are important!

 \overline{DM}

 $\Delta \sigma$

σ

 \sim 0.03

~ Tev

 ~ 25

ElectroWeak corrections are important!

DM

 $D\Lambda$

 $\Delta \sigma$

 σ

 \sim 0.03

~ Tev

 ~ 25

 $\sim75\%$

ElectroWeak corrections are important!

DM

 $D\Lambda$

unexpected species
different spectra

(especially at low
energy, but not only)

Ciafaloni et al., JCAP 1103 (2011) See also: Serpico et al., Bell et al.

$\frac{\text{Indirect Detection}}{\nu \text{ from DM annihilations in galactic center}}$

$\frac{\text{Indirect Detection}}{\nu \text{ from DM annihilations in galactic halo}}$

 $|
u_{\mu}|$

Basics:

neutrinos from galactic center or halo
 neutrinos from the Sun

Status:

neutrinos from galactic center or halo
 neutrinos from the Sun

Conclusions

basics: DM particle scatters with nuclei and loses energy if $v_f < v_{\rm esc}$ particle is gravitationally trapped it spirals to center of body and accumulates annihilates

 $v_{
m halo} \simeq 270 \
m km/s$ $v_{
m esc,\odot} \simeq 620 \
m km/s$ $v_{
m esc,\oplus} \simeq 12 \
m km/s$

basics: DM particle scatters with nuclei and loses energy if $v_f < v_{\rm esc}$ particle is gravitationally trapped it spirals to center of body and accumulates annihilates

 $v_{
m halo} \simeq 270 \
m km/s$ $v_{
m esc,\odot} \simeq 620 \
m km/s$ $v_{
m esc,\oplus} \simeq 12 \
m km/s$

basics: DM particle scatters with nuclei and loses energy if $v_f < v_{\rm esc}$ particle is gravitationally trapped it spirals to center of body and accumulates annihilates

 $v_{
m halo} \simeq 270 \
m km/s$ $v_{
m esc,\odot} \simeq 620 \
m km/s$ $v_{
m esc,\oplus} \simeq 12 \
m km/s$

 $C_{\mathrm{capt}}C_{\mathrm{ann}}$

equilibrium attained:

$$\dot{n} = C_{\text{capt}} - C_{\text{ann}} n^2$$

$$n(t) = \sqrt{\frac{C_{\text{capt}}}{C_{\text{ann}}}} \tanh\left(\frac{t}{\tau}\right) \qquad \left(\tau = \frac{1}{\sqrt{2}}\right)$$

$$\Gamma_{\rm ann}(t) = \frac{C_{\rm capt}}{2} \tanh^2\left(\frac{t}{\tau}\right)$$

basics: DM particle scatters with nuclei and loses energy if $v_f < v_{\rm esc}$ particle is gravitationally trapped it spirals to center of body and accumulates annihilates

 $v_{
m halo} \simeq 270 \
m km/s$ $v_{
m esc,\odot} \simeq 620 \
m km/s$ $v_{
m esc,\oplus} \simeq 12 \
m km/s$

equilibrium attained:

$$\dot{n} = C_{\rm capt} - C_{\rm ann} n^2$$

$$n(t) = \sqrt{rac{C_{ ext{capt}}}{C_{ ext{ann}}}} \tanh\left(rac{t}{ au}
ight) \qquad \left(au = rac{1}{\sqrt{C_{ ext{capt}}C_{ ext{ann}}}}
ight)$$

$$\Gamma_{\rm ann}(t) = \frac{C_{\rm capt}}{2} \tanh^2\left(\frac{t}{\tau}\right)$$

The main physical parameter is: σ_N (DM-nucleon scattering cross section)

DM^{\bullet} DM

 $W^-, Z, b, \tau^-, t, h \dots \rightsquigarrow e^{\mp}, \stackrel{(-)}{p}, \stackrel{(-)}{D}$.

primary
channelsfinal
products $W^+, Z, \bar{b}, \tau^+, \bar{t}, h \dots \rightarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

dense medium

Effects of the medium:

1) light hadrons (π , K...) and leptons (μ) are stopped and absorbed (unless energetic) 2) heavy hadrons/leptons lose some energy before decaying

 $W^-, Z, b, \tau^-, t, h \dots \rightarrow e^{\mp}, p', D'.$ decay

primary channels

 $W^+, Z, \overline{b}, \tau^+, \overline{t}, h \dots \rightsquigarrow e^{\pm}, \stackrel{(-)}{p}, \stackrel{(-)}{D} \dots$

dense medium

final

products

Effects of the medium:

1) light hadrons $(\pi, K...)$ and leptons (μ) are stopped and absorbed (unless energetic) 2) heavy hadrons/leptons lose some energy before decaying

oscillations + interactions

oscillations + interactions

oscillations + interactions

Sun $P_{ee}, P_{\mu\mu}$ Absorption only 0.8 Probability 7.0 P_{ee} $P_{\mu\mu}, P_{\tau\mu}, P_{\tau\tau}$ $P_{\tau e}, P_{\mu e}$ Oscillations only 0.2 0 10⁻¹ 10 1 10² 10^{3} Neutrino energy in GeV

detection

oscillations + interactions

 $\Phi_{
u_e}$

 $\Phi_{
u_{\mu}}$

 $\Phi_{\nu_{\tau}}$

production

oscillations + interactions

density matrix

$$\boldsymbol{\rho} = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} & \rho_{e\tau} \\ \rho_{\mu e} & \rho_{\mu\mu} & \rho_{\mu\tau} \\ \rho_{\tau e} & \rho_{\tau\mu} & \rho_{\tau\tau} \end{pmatrix}$$

full evolution equation:

$$\frac{d\rho}{dr} = -i[\boldsymbol{H}, \boldsymbol{\rho}] + \frac{d\rho}{dr} \bigg|_{\mathrm{CC}} + \frac{d\rho}{dr} \bigg|_{\mathrm{NC}} + \frac{d\rho}{dr} \bigg|_{\mathrm{In}}$$

2. Propagation: oscillations

$$\frac{d\boldsymbol{\rho}}{dr} = -i[\boldsymbol{H}, \ \boldsymbol{\rho}]$$

$$\boldsymbol{H} = \frac{\boldsymbol{m}^{\dagger}\boldsymbol{m}}{2E_{\nu}} + \sqrt{2}G_{\mathrm{F}} \begin{bmatrix} N_{e} \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} - \frac{N_{n}}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \end{bmatrix}$$

2. Propagation: oscillations

$$\frac{d\boldsymbol{\rho}}{dr} = -i[\boldsymbol{H}, \ \boldsymbol{\rho}]$$

$$\boldsymbol{H} = \frac{\boldsymbol{m}^{\dagger}\boldsymbol{m}}{2E_{\nu}} + \sqrt{2}G_{\mathrm{F}} \begin{bmatrix} N_{e} \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} - \frac{N_{n}}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \end{bmatrix}$$

vacuum mixing:

$$oldsymbol{m}^\dagger oldsymbol{m} = oldsymbol{V} \cdot \left(egin{array}{cc} m_1^2 & \ & m_2^2 & \ & & m_3^2 \end{array}
ight) \cdot oldsymbol{V}^\dagger$$

$$\begin{aligned} \theta_{\rm sun} &= 32^{\circ} \\ \theta_{\rm atm} &= 45^{\circ} \\ \theta_{13} &= 0 \\ \Delta m_{\rm sun}^2 &= 8.0 \ 10^{-5} {\rm eV}^2 \\ |\Delta m_{\rm atm}^2| &= 2.5 \ 10^{-3} {\rm eV}^2 \end{aligned}$$

2. Propagation: oscillations

$$\frac{d\boldsymbol{\rho}}{dr} = -i[\boldsymbol{H}, \ \boldsymbol{\rho}]$$

$$\boldsymbol{H} = \frac{\boldsymbol{m}^{\dagger}\boldsymbol{m}}{2E_{\nu}} + \sqrt{2}G_{\mathrm{F}} \begin{bmatrix} N_{e} \begin{pmatrix} 1 & & \\ & 0 & \\ & & 0 \end{pmatrix} - \frac{N_{n}}{2} \begin{pmatrix} 1 & & \\ & 1 & \\ & & 1 \end{pmatrix} \end{bmatrix}$$

vacuum mixing:

$$oldsymbol{m}^\dagger oldsymbol{m} = oldsymbol{V} \cdot egin{pmatrix} m_1^2 & \ & m_2^2 & \ & & m_3^2 \end{pmatrix} \cdot oldsymbol{V}^\dagger$$

$$\begin{aligned} \theta_{\rm sun} &= 32^{\circ} \\ \theta_{\rm atm} &= 45^{\circ} \\ \theta_{13} &= 0 \\ \Delta m_{\rm sun}^2 &= 8.0 \ 10^{-5} {\rm eV}^2 \\ |\Delta m_{\rm atm}^2| &= 2.5 \ 10^{-3} {\rm eV}^2 \end{aligned}$$

matter effect (MSW):

 $N_e(r), N_n(r)$ from solar/ Earth models

2. Propagation: CC absorption & tau regeneration

$$\frac{d\boldsymbol{\rho}}{dr}\Big|_{\mathrm{CC}} = -\frac{\{\boldsymbol{\Gamma}_{\mathrm{CC}},\boldsymbol{\rho}\}}{2} + \int \frac{dE_{\nu}^{\mathrm{in}}}{E_{\nu}^{\mathrm{in}}} \bigg[\boldsymbol{\Pi}_{\tau} \rho_{\tau\tau}(E_{\nu}^{\mathrm{in}}) \Gamma_{\mathrm{CC}}^{\tau}(E_{\nu}^{\mathrm{in}}) f_{\tau \to \tau}(E_{\nu}^{\mathrm{in}}, E_{\nu}) + \boldsymbol{\Pi}_{e,\mu} \bar{\rho}_{\tau\tau}(E_{\nu}^{\mathrm{in}}) \bar{\Gamma}_{\mathrm{CC}}^{\tau}(E_{\nu}^{\mathrm{in}}) f_{\bar{\tau} \to e,\mu}(E_{\nu}^{\mathrm{in}}, E_{\nu})\bigg]$$

2. Propagation: NC scatterings

$$\frac{d\rho}{dr} = -i[H, \rho] + \frac{d\rho}{dr}\Big|_{CC} + \frac{d\rho}{dr}\Big|_{NC}$$

$$\frac{\nu_e \ \nu_\mu \ \nu_\tau}{E} \qquad N \qquad E'$$

$$\frac{d\boldsymbol{\rho}}{dr}\Big|_{\mathrm{NC}} = -\int_0^{E_\nu} dE'_\nu \frac{d\Gamma_{\mathrm{NC}}}{dE'_\nu} (E_\nu, E'_\nu)\boldsymbol{\rho}(E_\nu) + \int_{E_\nu}^\infty dE'_\nu \frac{d\Gamma_{\mathrm{NC}}}{dE_\nu} (E'_\nu, E_\nu)\boldsymbol{\rho}(E'_\nu)$$

2. Propagation: summary

Effects of oscillations and interactions:

- reshuffle of the 3 flavors (oscillations and regeneration)

- attenuation of the fluxes

- degradation of energy (distortion of spectra)

Basics: 1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Status: 1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Conclusions

$\frac{\text{Neutrino constraints}}{\nu}$ from DM annihilations in galactic center/halo

ICECUBE

Icecube Coll., 1101.3349 + Carlos de los Heros, talk at TeVPA 2011, Stockholm + Icecube Coll., 1111.2738

90% C.L. Upper Limit - Einasto 10⁻¹⁸ PAMELA Inita. (7)90° D 60 IceC 10^{-20} signal bckgr IceCub region region GC ∆ RA=0° ∆ RA=180° U 10-2 D $<\sigma_A v>$ Einas imanar 10⁻²⁴ Natural scale 10⁻²⁶ 10^{3^{10^{-1P}}} IceCube _____ 4 90% C.L. Upper Onit 10⁻²⁰ **Ge** 10⁻²⁰ **Ge** 10⁻²² 10⁻²² m_{χ} ermi Data 10⁻²⁴ **PAMELA** Data Natural scale 10⁻²⁶ 10³ 10^{4}

m_v [GeV]

Neutrino constraints Comparing with SuperKamiokande data in 3° to 30° - dependance on DM profile

Ð

Papucci

umia,

Basics: 1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Status:

neutrinos from galactic center or halo
 neutrinos from the Sun

Conclusions

Indirect Detection

/ from DM annihilations in the Sun
Probe the scattering
cross section.

Cross section.

SuperKamiokande

Pualue zor noza, vank al TeVPA 2011, Stockholm

Basics: 1) neutrinos from galactic center or halo 2) neutrinos from the Sun

Status:

neutrinos from galactic center or halo
 neutrinos from the Sun

Conclusions

DMV are an interesting, clean, rather robust probe of DM.

DMV are an interesting, clean, rather robust probe of DM.

complementary to other messengers neutrinos travel undisturbed rather small astro uncertainty

DMV are an interesting, clean, rather robust probe of DM.

rather small astro uncertainty

neutrinos travel undisturbed

complementary to other messengers

Two classes: i) from the GC/GH, ii) from massive bodies (Sun)

DMV are an interesting, clean, rather robust probe of DM.

rather small astro uncertainty

neutrinos travel undisturbed

complementary to other messengers

Two classes: i) from the GC/GH, ii) from massive bodies (Sun)

Currently only bounds (but experiments get better and better)

DMV are an interesting, clean, rather robust probe of DM.

complementary to other messengers neutrinos travel undisturbed rather small astro uncertainty

Two classes: i) from the GC/GH, ii) from massive bodies (Sun)

Currently only bounds (but experiments get better and better)

Advertisements:

You want to compute all **signatures** of your DM model in positrons, electrons, <u>neutrinos</u>, gamma rays... but you don't want to mess around with astrophysics?

DMV are an interesting, clean, rather robust probe of DM.

complementary to other messengers

1012.4515

neutrinos travel undisturbed rather small astro uncertainty

Two classes: i) from the GC/GH, ii) from massive bodies (Sun)

Currently only bounds (but experiments get better and better)

Advertisements:

You want to compute all **signatures** of your DM model in positrons, electrons, <u>neutrinos</u>, gamma rays... but you don't want to mess around with astrophysics?

PPPC 4 DM ID

'The Poor Particle Physicist Cookbook for Dark Matter Indirect Direction'

Cirelli, Corcella, Hektor, Hütsi, Kadastik, Panci, Raidal, Sala, Strumia

www.marcocirelli.net/PPPC4DMID.html

DMnu

'Spectra of neutrinos from Dark Matter anihilations'

hep-ph/0506298

Cirelli, Fornengo, Montaruli, Sokalski, Strumia, Vissani

www.marcocirelli.net/DMnu.html