High-energy Neutrino Astronomy

An overview oriented towards the Cherenkov Technique

Antoine Kouchner Université Paris 7 Diderot Laboratoire APC

Credits: Ch. Spiering, L. Moscoso, F. Halzen, A. Karle, G. Sullivan, P. Coyle, Th. Patzak, D. Vignaud, E. Resconi...many others

LioNeutrino Workshop

Lyon, October 23, 2012

Neutrino astronomy

Historical aspects Scientific motivations S. Drappeau & P. Baerwald

Cosmic neutrino sources

Neutrino telescope

Detection principles Current telescopes

P. Gay → **Selected results**

Diffuse Flux Search for point sources V. Van Elewyck \rightarrow Multi-messenger search

K. Clarke → Future prospects

Outline

First ideas early 60's...science

NEUTRINO INTERACTIONS¹

Ann.Rev.Nucl.Sci 10 (1960) 1

By FREDERICK REINES²

IV. COSMIC AND COSMIC RAY NEUTRINOS

As we have seen, interactions of high-energy particles with matter produce neutrinos (and antineutrinos). The question naturally arises whether the neutrinos produced extraterrestrially (cosmic) and in the earth's atmosphere (cosmic ray) can be detected and studied. Interest in these possibilities stems from the weak interaction of neutrinos with matter, which means that they propagate essentially unchanged in direction and energy from their point of origin (except for the gravitational interaction with bulk matter, as in the case of light passing by a star) and so carry information which may be unique in character. For example, cosmic neutrinos can reach us from other galaxies whereas the charged cosmic ray primaries reaching us may be largely constrained by the galactic magnetic field and so must perforce be from our own galaxy. Our more usual source of astronomical information, the photon, can be absorbed by cosmic matter such as dust. At present no acceptable theory of the origin and extraterrestrial diffusion of cosmic rays exists so that the cosmic neutrino flux can not be usefully predicted. An observation of these neutrinos would provide new information as to what may be one of the principal carriers of energy in intergalactic space.

The situation is somewhat simpler in the case of cosmic-ray neutrinos: they are both more predictable and of less intrinsic interest. Cosmic-ray

Greisen, 1960, Proc. Int. Conf on Instrum for HE physics

One may even anticipate eventual high-energy neutrino astronomy, since neutrino travel in straight lines, unlike the usual primary cosmic rays, and the neutrinos will convey a new type of astronomical information quite different from that carried by visible light and radio waves

First ideas early 60's...method

COSMIC RAY SHOWERS1

Ann.Rev.Nucl.Sci 10 (1960) 63

By Kenneth Greisen

Let us now consider the feasibility of detecting the neutrino flux. As a detector, we propose a large Cherenkov counter, about 15 m. in diameter, located in a mine far underground. The counter should be surrounded with photomultipliers to detect the events, and enclosed in a shell of scintillating material to distinguish neutrino events from those caused by μ mesons. Such a detector would be rather expensive, but not as much as modern accelerators and large radio telescopes. The mass of sensitive detector could be about 3000 tons of inexpensive liquid. According to a straightforward

For example, from the <u>Crab nebula the neutrino energy emission</u> is expected to be three times the rate of energy dissipation by the electrons, leading to a flux of $6 \cdot 10^{-4}$ Bev/cm.²/sec. at the earth. In the detector described above, the counting rate would be one count every three years with the lower of the theoretical cross sections—rather marginal, though the background from other particles than neutrinos can be made just as small. The detector has the virtue of good angular resolution to assist in distinguishing rare events having unique directions.

Fanciful though this proposal seems, we suspect that within the next decade, cosmic ray neutrino detection will become one of the tools of both physics and astronomy.

First atmospheric neutrinos

Detection of nearly horizontal atmospheric neutrinos in a South African Gold mine.

F. Reines, 1965

... one of the main motivations for Reines' South Africa detector, the Kolar Gold Field Detector (India) and the Baksan scintillation detector(Russia). Early sixties: does the neutrino cross section saturate beyond 1 GeV (i.e. one would never measure atm. neutrinos with energies higher than a few GeV).

First atmospheric neutrinos...

Fig. 2. The first neutrino sky map with the celestial coordinates of 18 KGF neutrino events [Krishnaswamy 1971]. Due to uncertainties in the azimuth, the coordinates for some events are arcs rather than points. The labels reflect the numbers and registration mode of the events (e.g. "S" for spectrograph). Only for the ringed events the sense of the direction of the registered muon is known.

Neutrinos from space: the long quest

The Nobel Prize in Physics 2002

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos" "for pioneering contributions to astrophysics, which have led to the discovery of cosmic Xray sources"

Solar neutrinos

(MeV energies) Davis et al. 1955 – 1978 Koshiba et al., 1987 – 1988

Presence of cosmic neutrinos E > GeV?

Galactic Extragalactic

« These neutrino observations are so exciting and significant that I think we're about to see the birth of an entirely new branch of astronomy: neutrino astronomy.»

J.Bahcall New York Times (3 Apr 1987)

Raymond Davis Jr.	Masatoshi Koshiba		
🕑 1/4 of the prize	🕙 1/4 of the prize		
USA	Japan		
University of Pennsylvania Philadelphia, PA, USA	University of Tokyo Tokyo, Japan		
b. 1914	b. 1926		

Riccardo Giacconi ① 1/2 of the prize

USA

Associated Universities Inc Washington, DC, USA b. 1931

(in Genoa, Italy)

From MeV ν to PeV ν

Neutrino telescopes: science scope

Marine sciences: oceanography, biology, geology...

Multi-messenger astronomy

UHE cosmic rays.

CAPRICE ~E-2.7 AMS Nature 10⁰ BESS98 protons only Ryan et al. accelerates JACEE Akeno all-particle Tien Shan particles 10⁷ MSU 10⁻² (GeV cm⁻²sr⁻¹s⁻¹) electrons KASCAD CASA-BLANCA times the HEGRA positrons CasaMia energy of LHC! Tibet 10⁻⁴ Flv Eve Haverah knee AGASA 1 part m⁻² y HIRES Cutoff now confirmed E²dN/dE 10⁻⁶ antiprotons But... ankle 1 part km⁻² yr⁻¹ where? 10⁻⁸ LHC how? 10⁻¹⁰ 10⁰ 10² 10¹⁰ 10⁴ 10^{6} 10^{8} 10¹² (GeV / particle) Ekin

Energies and rates of the cosmic-ray particles

Only (controversial) indications

Astropart. Phys. 34 (2010)

AUGER 69 evts E>55 EeV VCV catalogue

The correlation rate dropped from 68% (2007) to 38% (2010) More data are needed... Small window for astronomy $\sim 10^{20} \text{ eV}$

Multi-messenger astronomy

Mutli-wavelength/messenger analysis \rightarrow Modeling of the source

Cosmic ray connection

Hadronic cascades (as for atmospheric showers)

 $v_e: v_u: v_\tau = 1:2:0$ source <u>oscillations</u> $v_e: v_u: v_\tau = 1:1:1$ Earth

 Primary acceleration («Bottom-Up») Stochastics shocks (Fermi mechanism) Explosion /Accretion / Core collapse

inverse Compton scattering

• But HE γ also from electromagnetic processes Synchrotron Inverse Compton

synchrotron radiation

« Guaranteed » Flux / Upper Bounds

Benchmark extragalactic muon neutrino flux

Waxman & Bahcall, 1999

Estimated energy density of UHECR:

$$E^2 \left. \frac{d\dot{N}_{\rm CR}}{dE} \right|_{E_{\rm min}} \approx 10^{44} \,\mathrm{erg} \,\mathrm{Mpc}^{-3} \mathrm{yr}^{-1}$$

Energy lost to ν in p γ interactions over Hubble time:

 $E_{\nu}^2 \frac{dN_{\nu}}{dE_{\nu}} \approx \frac{3}{8} \epsilon_{\pi} t_{\rm H} E^2 \frac{d\dot{N}_{\rm CR}}{dE}.$

Resulting total v flux:

$$[E_{\nu}^{2}\Phi_{\nu}]_{\rm WB} \approx 2.3 \times 10^{-8} \epsilon_{\pi} \xi_{z} \ {\rm GeV cm}^{-2} {\rm s}^{-1} {\rm sr}^{-1}$$

E⁻² I(E) = 4.5 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ ~ 500 events /yr/ km²

Hypothesis: UHECR are protons, if not scales with p fraction

· Cosmogenic neutrino flux

Berezinsky & Zatsepin, 1969 UHECR p interact with CMB =>GZK cut off

Models currently being probed by existing neutrino telescopes

Potential extragalactic sources

Active Galactic Nuclei (AGN)

Steady (though flaring) sources

Observed luminosities $10^9 - 10^{15} L_{\odot}$

Gamma Ray Bursters (GRB)

Short emissions (~1s) Very bright ~ 10^{18} ×L_{\odot}

Counterparts : z up to 8.3

BATSE : 1 burst/day

Starburst Galaxies supernovae -> cosmic rays + dense gas -> pions

Potential Galactic sources

Microquasars X-ray binaries with compact object (neutron star or black hole) accreting matter and re-emitting it in relativistic jets (intense radio & IR) flares.

SGRs X-ray pulsars with a soft γ -ray bursting activity.

Magnetar model: highly magnetized neutron stars whose outbursts are caused by global star-quakes

 \rightarrow HEN from jets

\rightarrow HEN from GRB-like flares

Galactic Center seen with TeV photons

• Supernovae remmants

pulsars, neutron stars

• Dense regions Sun , Galactic Centre, Interstellar medium

 \rightarrow Mosty seen by Northern Hemisphere neutrino telescopes

Neutrino astronomy

Historical aspects Scientific motivations S. Drappeau & P. Baerwald → Cosmic neutrino sources

Neutrino telescope

Detection principles Current telescopes

P. Gay → **Selected results**

Diffuse Flux Search for point sources *V. Van Elewyck* → Multi-messenger search

K. Clarke → Future prospects

- Detection effective volume increases with E_v
 - Angle between v and μ decreases with E_{ν}
 - Interaction cross section increases with E_v

Detection of HE muon neutrinos is favoured

Detection rate

The number of muon events in units of detection area A and observation time T is:

$$\frac{N_{\mu}(E_{\mu,min},\vartheta)}{AT} = \int_{E_{\mu,min}}^{E_{\nu}} dE_{\nu} \Phi_{\nu}(E_{\nu},\vartheta) P_{\nu\mu}(E_{\nu},E_{\mu,min}) e^{-\sigma_{tot}(E_{\nu})N_{A}Z(\vartheta)}$$

- Neutrino flux spectrum
- Probability to produce a detectable (E_µ>E_{min}) muon
- Earth transparency to HE neutrinos → >PeV neutrinos search for "horizontal" tracks

$$\begin{split} P_{\nu \to l} &= \mathcal{N} \int_{E_{min}}^{E_{\nu}} dE_l \frac{d\sigma}{dE_l} R_l(E_l, E_{min}) \\ & \mathsf{Range of} \\ \mathsf{epton of energy} \\ & \mathsf{El before it reaches } \mathsf{E}_{min} \\ & \mathsf{S}_{vN} \begin{cases} & \mathsf{E}_v \quad \mathsf{E}_v \leq 5\mathsf{TeV} \\ & & \mathsf{S}_v \in \mathsf{E}_v^{-4} \quad \mathsf{E}_v > 5\mathsf{TeV} \end{cases} \end{split}$$

At >TeV energies the muon and the neutrino are co-linear

Muon energy loss

 $\frac{dE}{dx} = a(E) + b(E)E$

Dominant for energy of 5 GeV - 1 TeV

Ionization

Energy loss proportional to the muon range

Dark matter and oscillation studies

Dominant at hight energy > 1 TeV

Pair creation, Bremsstrahlung, photo-nuclear interactions

Energy estimated from the total amount of collected light.

Through going events

Astrophysics

Reconstruction of muon trajectory

Natural radiator is low cost and allows huge instrumented regions → Deep sea or lake → Deep clear Ice

Detection of Cherenkov light emitted by muons with a 3D array of PMTs

Requires a large (km³) dark transparent detection medium

Time, position, amplitude of PMT pulses $\Rightarrow \mu$ trajectory (~ v < 0.5 °)

 $\gamma_{\check{c}}$

 $\theta_{\check{\mathbf{c}}}$

Atmospheric background vs cosmic v's

Atmospheric muons: shield detector & define signal as upward muons

Atmospheric neutrinos: search for

• An excess at High Energy

Anisotropies

• Time / space coincidence with other cosmic probes

Other neutrino interaction topologies

Neutrino telescopes (TeV)

{ANTARES, NEMO, NESTOR} \in Consortium KM3NeT

Years 80's : the first project

See also: A.Roberts: The birth of high-energy neutrino astronomy: a personal history of the DUMAND project, Rev. Mod. Phys. 64 (1992) 259.

DUMAND-II (The Octagon)

R&D in Hawaii

got it operating yet !"

J G Learned (1992)

December 1993: deployment of first string and connection to junction box. Failure

1995: DUMAND project is terminated

First steps in the Ice...

Observation of muons using the polar ice cap as a **Cerenkov detector**

D. M. Lowder*, T. Miller*, P. B. Price*, A. Westphal*, S. W. Barwick†, F. Halzen‡ & R. Morse‡

* Department of Physics, University of California, Berkeley, California 94720, USA
† Department of Physics, University of California, Irvine, California 92717, USA
‡ Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

ACKNOWLEDGEMENTS. We thank B. Koci and the entire PICO organization for the use of the borehole and for on-site assistance, E. K. Solarz and W. Williams for their help with the mechanical construction of the PMT string, J. Lynch and H. Zimmerman of the NSF, J. Learned for his sharing of DUMAND expertise, and E. Zeller of the University of Kansas for suggesting the idea of using South Pole ice in a neutrino telescope. This work was supported in part by the Division of Polar Programs of the US NSF and by the California Space Institute. F. Halzen

...were difficult

Crédit : Ch. Spiering

...but conclusive !

Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice

E. Andrés*, P. Askebjer†, X. Bai‡, G. Barouch*, S. W. Barwick§, R. C. Bayl, K.-H. Becker J, L. Bergström +, D. Bertrand#, D. Bierenbaum 5, A. Biron*, J. Booth§, O. Botner**, A. Bouchta[#], M. M. Bovce*, S. Carius††, A. Chen*, D. Chirkin 9, J. Conrad**, J. Cooley*, C. G. S. Costa#, D. F. Cowen‡‡, J. Dailings, E. Dalbergt, T. DeYoungt, P. Desiati²⁷, J.-P. Dewulf#, P. Doksus*, J. Edsjö†, P. Ekström†, B. Erlandsson†, T. Feser§§, M. Gaug^{*}, A. Goldschmidt^{III}, A. Goobar[†], L. Gray⁺, H. Haase^{*}, A. Hallgren**, F. Halzen*, K. Hanson‡‡, R. Hardtke*, Y. D. Hel, M. Hellwig§§, H. Heukenkamp^{*}, G. C. Hill^{*}, P. O. Hulth[†], S. Hundertmarks, J. Jacobsen III, V. Kandhadai*, A. Karle*, J. Kims, B. Koci*, L. Köpke§§, M. Kowalski[±], H. Leich[±], M. Leuthold[±], P. Lindahl⁺⁺, I. Liubarsky⁺, P. Loaiza⁺⁺, D. M. Lowder^{||}, J. Ludvig^{|||}, J. Madsen*, P. Marciniewski**, H. S. Matis , A. Mihalyitt, T. Mikolajski^{**}, T. C. Miller[‡], Y. Minaeva[†], P. Miočinović[†], P. C. Mock[§], R. Morse*, T. Neunhöffer§§, F. M. Newcomer‡‡, P. Niessen*, D. R. Nygrenill, H. Ögelman*, C. Pérez de los Heros**, R. Porrata§, P. B. Pricel, K. Rawlins*, C. Reed§, W. Rhode¶, A. Richardsl, S. Richter*, J. Rodriguez Martino†, P. Romenesko*, D. Ross§, H. Rubinstein†, H.-G. Sanderss, T. Scheiderss, T. Schmidt²⁷, D. Schneider*, E. Schneiders, R. Schwarz*, A. Silvestrig*, M. Solarzi, G. M. Spiczaka, C. Spiering[®], N. Starinsky^{*}, D. Steele^{*}, P. Steffen[®], R. G. Stokstad[®], 0. Streicher*, Q. Sun†, I. Taboada‡‡, L. Thollander†, T. Thon*, S. Tilav*, N. Usechak§, M. Vander Donckt#, C. Walck+, C. Weinheimer§§, C. H. Wiebusch^{**}, R. Wischnewski^{**}, H. Wissing^{**}, K. Woschnagg^{||}, W. Wus, G. Yodhs & S. Youngs

NATURE 2001

AMANDA B10 (1996/97) IceCube will work !

Figure 1 The AMANDA-B10 detector and a schematic diagram of an optical module. Each dot represents an optical module. The modules are separated by 20 m on the inner strings (1 to 4), and by 10 m on the outer strings (5 to 10). The coloured circles show pulses from the photomultipliers for a particular event; the sizes of the circles indicate the amplitudes of the pulses and the colours correspond to the time of a photon's arrival. Earlier times are in red and later ones in blue. The arrow indicates the reconstructed track of the upwardly propagating muon.

Result from 7 years of AMANDA II

- 6595 neutrinos up to record energy of 200 TeV
- Record limits on fluxes for cosmic neutrinos (diffuse, point sources, GRB)

- Record limits on indirect dark matter search, magnetic monopoles, tests of Lorentz invariance
- Monitoring the galaxy for supernova bursts
- Spectrum and compositon of cosmic rays

Now superseded by current IceCube results

IceCube : the biggest NT in the world

Completed since December 2010.

IceCube construction/data phases

			State - August	A BE THE REAL	
	Strings	Data (year)	Livetime	trigger rate (Hz)	HE v rate (per day)
Sec.	AMANDAII(19)	2000-2006	3.8 years	100	~5 / day
	IC40	2008-09	375 days	1100	~40/ day
	IC59	2009-10	350 days	1900	~70/ day
DeepCore nstalled		2010-11	320 days	2250	~100/day
	IC86-I	2011-2012	~ year	2700	processing
	IC86-II	current		2700	running

Run transition typically mid May

- Detector performance parameters increase faster than the number of strings
 - Longer muon tracks (km scale)
 - Improved analysis techniques

IC86 achieving ~ 99% uptime

The Ice optics

Credit: C. Kopper
Why the Mediterranean Sea?

Obvious complementarity to South Pole

Galactic centre

- Long (homogeneous) scattering length
 Good pointing accuracy
- Deep sites up to ~5000m
 Detector shielding
- Logistically attractive
 - Close to shore (deployment / repair)
- Optical activity

Requires causality filters but can be used for calibration ©

Most of the HESS TeV Sources visible by Northern NT

ANTARES Optical background

fraction (%) Base line OM1 $^{40}\mathcal{K}$ OM2 OM3 **Bio-luminescence** Radio Activity burst 1 30 **Bio-luminescence burst:** 20 photo-emitter animals 10 12 10

10 12 14 water current (cm/s)

The 80's : first successes in water

The lake Baikal detector

L→ deepest lake (1.7 km), largest fresh water reservoir in the world

- 1984: first stationary string
 - Muon flux measurement
- 1986: second stationary string (Girlyanda 86)
 - Limits on GUT magnetic monopoles
- All that with 15-cm flat-window PMT FEU-49
- Development of a Russian smart phototube (Quasar)

Baikal NT status

NT200 +

8 strings (192 OMs) + 3 outer strings (36 OMs)

> Height x \varnothing 210m x 200m V_{inst} = 4×10⁶m³

Eff. shower volume: 10 PeV ~ 10 Mton

Includes 2 prototype strings for GVD New OM, DAQ, cabling triggering systems

Sea science and Earthquakes

Neutrino astronomy

Historical aspects Scientific motivations S. Drappeau & P. Baerwald -> Cosmic neutrino sources

Neutrino telescope

Detection principles Current telescopes

P. Gay → Selected results

Diffuse Flux Search for point sources V. Van Elewyck \rightarrow Multi-messenger search

K. Clarke → Future prospects

IceCube : Cosmic ray studies

📖 ApJ (2011) 740 16

Unexplained anisotropy...

IceCube : Cosmic ray studies

IceCube Diffuse Neutrino Searches

 Look for high-energy neutrino events above the rapidly falling atmospheric neutrino spectrum

- Upward muon neutrinos
- Cascade events (CC ν_e and ν_τ , NC all flavors)
- v_{μ} diffuse search
 - IC 40 published 🛄 PRD 84, 082001 (2011)
 - New results from IC59
- Cascade search
 - Analysis with IC40 not yet published
 - IC79+IC86 [2011] search for cosmogenic neutrinos
 - → 2 events near threshold...

Diffuse IC 59 search (muons)

The highest energy event in the sample

Selection of upgoing, high-energy neutrino induced muon events to remove background from downgoing atmospheric muons.

Expected event numbers

Conventional v _u :	\sim 21 000
Prompt v_:	~ 150
Astrophysical v_:	< 40

Conv. atms. muon background:

~ 30

Diffuse IC 59 search (muons)

348 days

Current limits

Almost 3 orders of magnitude w.r.t underground experiments 1-2 orders of magnitude below most optimistic predictions

IC40 v Cascade Diffuse Search

signal: v induced particle showers (v_e CC + all-flavor NC)

background: atm. µ

difficult background: atm. μ with catastrophic energy losses

The analysis uses a Boosted Decision Tree optimized for removing atmospheric µ's

IC40 v Cascade Diffuse Search

14 events found after cuts in a total livetime of 373.6 days (11.6 excepted from background)

HE vs LE sample analysis under study

Run	Date	BDT response	Energy
110860	18 th April 2008	0.268	29 TeV
110862	19 th April 2008	0.375	31 TeV
110884	23 rd April 2008	0.416	175 TeV
110964	10 th May 2008	0.230	27 TeV
111076	29 th May 2008	0.225	41 TeV
111113	5 th June 2008	0.380	174 TeV
111281	7 th July 2008	0.293	31 TeV
111558	30 th August 2008	0.232	45 TeV
111780	16 th October 2008	0.236	144 TeV
111917	8 th November 2008	0.279	32 TeV
112406	14 th January 2009	0.203	47 TeV
112782	6 th February 2009	0.219	57 TeV
113693	12 th May 2009	0.295	40 TeV
113802	17 th May 2009	0,281	27 TeV

IC79+IC86 v UHE Search

2 events are observed in the PeV energy region in IC 86 sample

IC79+IC86 v UHE Search

Expected event numbers

Probability to be consistent with conv. atms. or prompt is very small.

p-value 1.9x10⁻³ (2.9o) beyond conventional background

Recent searches for neutrino point sources

- SK experiment (low energy threshold E>1.6 GeV)
 - All 3134 upward through going events in 2623 days
- ANTARES first analysis with 5-10-12 lines (TeV)
 2007-2010 (813 days) data analyzed

•ICECUBE with IC40+59 data set (723 days) in all sky

Sky maps

Methods Neunhoffer and Kopke NIM A 558 (2006) 561 Hill and Rawlins, Astrop. Phys., 19, 393, (2003)

Summarized generic "blind" analysis (Optimized with scrambled data set)

- Use Clusterization algorithm
- Calculate a statistic given data (eg. Likelihood ratio)
- Compute *p-value* (probability to observe such statistic from bkg)
- Compute post-trial significance probability to observe *p-value* from many experiments

These analyses can be performed for :

- All sky search
- Predefined list of known sources
- Collection of sources of same kind summed up (stacking analysis)

IceCube sky map

signal term contains angular and energy pdf

IceCube sky map...latest?

Current Upper limits

Alert programs

cf Philipp Baerwald

- Search for neutrino events in coincidence with observed GRB
 - Time and direction known & background reduction improved sensitivity
 Individual modeling of bursts using satellite data (fireball model)

Best limit obtained with IC40+59 Excludes optimistic predictions based on fireball model Nature 484, 351–354 (19 April 2012)

• ANTARES dumps all buffered unfiltered data when receiving an alert (~1min)

- Reversely, IceCube and ANTARES also send alerts for optical follow up
 - Could give confirmation of a detection
 - Triggers are VHE events or multiplets (rolling searches)

Neutrino astronomy

Historical aspects Scientific motivations S. Drappeau & P. Baerwald → Cosmic neutrino sources

Neutrino telescope

Detection principles Current telescopes

P. Gay → Selected results Diffuse Flux Search for point sources V. Van Elewyck → Multi-messenger search

KM3Ne¹

Outline

The Neutrino Detector Spectrum

The Neutrino Detector Spectrum

Neutrino effective areas

Gton Volume Detector (Lake Baikal)

10368 photo-sensors on 216 strings 27 subarrays (clusters with 8 strings) String: 4 sections, 48 photo-sensors Active depths: 600 – 1300 m To Shore: 4 – 6 km Instrumented water volume V= 1.5 km³ S = 2 km² Angular resolution Muons: 0.25 degree

Showers: 3.5-5.5 degree

Full first cluster 2014 ?

KM3NeT activities

Consortium : 40 institutes from 10 European countries

Objectives :

- Built a km scale NT in the Mediterranean that exceeds IceCube sensitivity by a substantial factor (target TeV galactic sources for an overall budget of ~ 250 M€)

- Provide node for Earth and marine sciences (real time multidisciplinary observatory)

Achievements :

- Constructive gathering of "dispersed" forces
- Conceptual Design Report (CDR) published
- Technical Design Report (TDR) available
- -Towards a multi-site detector
- Secured funds 40 M€

http://www.km3net.org/public.php

The detector layout

The String Technology

Multi-PMT Optical Module 31 small PMTs (3-inch) inside a 17 inch glass sphere

Detection Unit with 20 storeys

40 m inter-storey distance

Compact deployment

Expected sensitivity E⁻² spectrum

Full detector (310 DUs)

KM3NeT sensitivity 90%CL KM3NeT discovery 5σ 50% IceCube sensitivity 90%CL IceCube discovery 5σ 50% 2.5÷3.5 above sensitivity flux. (extrapolated from IC 40)

Observed Galactic TeV- y sources

The case for RXJ 1713

- 2-2.5 years for 3 σ discovery
- 5-6 years for 5 σ discovery

Anticipated Improvements

Unbinned analysis, source morphology, improved reconstruction

Fermi Bubbles

"Giant, Multi-Billion-Year-Old Reservoirs of Galactic Center Cosmic Rays" M. Crocker and F. Aharonian Phys. Rev. Lett. 106 (2011) 11102

"Bilateral 'bubbles' of emission centered on the core of the Galaxy and extending to around 10 kpc above and below the Galactic plane. These structures are coincident with a non-thermal microwave 'haze' found in WMAP data and an extended region of X-ray emission detected by ROSAT."

For 100% hadronic models: $F_{V} \sim 1/2.5 F_{Y}$ (Vissani) $E^{2}dF_{V}/dE=1.2*10^{-7} \text{ GeV cm}^{-2}\text{s}^{-1}\text{sr}^{-1}$ E cutoff protons: 1PeV-10 PeV (Croker&Aharonian) E cutoff neutrinos = 1/20 cutoff protons

Search for Neutrinos from Fermi Bubbles

Good visibility for ANTARES/KM3NeT

ANTARES

Background estimated from average of three 'OFF' regions (time shifted in local coordinates)

Nback (OFF) = 90 ± 5 (stat) ± 3 (sys) Nsig (ON) = 75

No signal

→ exclude fully hadronic model no cutoff (90%CL F&C)

KM3NeT

- Few months for 3 σ discovery
- About 1 year for a 5 σ discovery (E⁻² 100TeV cutoff)

Submitted to Astroparticle Physics arXiv:1208.12266

Towards a futur Global Neutrino Observatory?

South hemisphere: – 1km³

Already common meeting once a year since 2008... "MANTS symposium"

Northern hemisphere:

KM3NeT (2 x 2.5) km³ + 1.5 km³ GVD

Conclusions

 V_{μ}

Neutrino astronomy has made great progress

IceCube now sensitive to the region of physical interest.

 ANTARES has demonstrated the feasibility of a deep-sea ANTARES is the larger NT in the Northern hemisphere...
 A platform for associated sciences.

Interesting physics cases being investigated with low/high energy extensions

The best is yet to come!