reactor 013

(the ultimate measurement?)

LIO Neutrinos @ Lyon (France) October 2012

Anatael Cabrera

(アナタエル カブレラ)

CNRS / IN2P3 Double Chooz @ APC (Paris)

Wednesday, 24 October 2012

Anatael Cabrera (CNRS-IN2P3 & APC)

Lisi et al opinion (Sept. 2012)

Lisi et al opinion (Sept. 2012)

Numerical 10, 20, 30 ranges:

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν

18

mass-mixing parameters. We remind that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH.							
Parameter	Best fit	1σ range	2σ range	3σ range			
$\delta m^2/10^{-5} \text{ eV}^2$ (NH or IH)	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18			
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59			
$\Delta m^2/10^{-8} \text{ eV}^2$ (NH)	2.43	2.33 - 2.49	2.27 - 2.55	2.19 - 2.62			
$\Delta m^2/10^{-3} \text{ eV}^2$ (IH)	2.42	2.31 - 2.49	2.26 - 2.53	2.17 - 2.61			
$\sin^2 \theta_{12} / 10^{-2}$ (NH)	2.41	2.16 - 2.66	1.93 - 2.90	1.69 - 3.13			
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.44	2.19 - 2.67	1.94 - 2.91	1.71 - 3.15			
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	3.86	3.65 - 4.10	3.48 - 4.48	3.31 - 6.37			
$\sin^2 \theta_{23} / 10^{-1}$ (IH)	3.92	3.70 - 4.31	$3.53 - 4.84 \oplus 5.43 - 6.41$	3.35 - 6.63			
δ/π (NH)	1.08	0.77 - 1.36					
δ/π (IH)	1.09	0.83 - 1.47		_			

 Spectrum
 Fractional 10 accuracy [defined as 1/6 of ±30 range]

 δm^2 Δm^2 $\sin^2 \theta_{12}$ $\sin^2 \theta_{13}$ $\sin^2 \theta_{23}$

 2.6%
 3.0%
 5.4%
 10%
 14%

Note: above ranges obtained for "old" reactor fluxes. For "new" fluxes, ranges are shifted (by ~ 1/3 σ) for two parameters only: $\Delta \sin^2 \theta_{12}/10^{-1} \approx +0.05$ and $\Delta \sin^2 \theta_{13}/10^{-2} \approx +0.08$

Hierarchy differences well below 1σ for various data combinations

θ_{23} octant...

いろうがあた

Anatael Cabrera (CNRS-IN2P3 & APC)

Lisi et al @ Shenzhen'2012

13

Adding 2012 SK atmospheric neutrino data:

Further hints for θ_{23} in 1st octant. But no significant hierarchy discrimination.

Anatael Cabrera (CNRS-IN2P3 & APC)

δ_{CP} global info...

いろの金を

Lisi et al @ Shenzhen'2012

16

We find a preference for $\delta \sim \pi$ (helps fitting sub-GeV e-like excess in SK)

9

why reactors are so cool?

the coolest reason for us...

ND⇒ reduce several systematic uncertainties (mainly flux rate & shape) wrt FD

 $ND \Rightarrow$ isolates from reactor anomaly (fast oscillation \rightarrow averge effect) [DC: Bugey4]

Anatael Cabrera (CNRS-IN2P3 & APC)

Wednesday, 24 October 2012

11

why reactors?

- copious (high statistics) source and free vs
 - highly reliable ''beam'' (reactor-OFF \Rightarrow very expensive, even ''strike'' proof)
- excellent $\delta(E/L)$ resolution \Rightarrow disappearance experiment
- [for θ_{13} searches] **short baselines** \Rightarrow
 - small detectors (less expensive)
 - negligible matter & "NSI" effects (global analysis input)
- high & known cross-section \Rightarrow <u>exciting situation</u> (so called reactor anomaly)
- **BGs** \Rightarrow overburden, shielding, radio-purity (possible ''reactor OFF'')
- trivial multi-detector extrapolation \Rightarrow flux scales with $1/L^2$ (isotropic)
- rich energy calibration \Rightarrow many radioactive sources @ few MeV
- one unknown & one observable \Rightarrow unambiguous θ_{13} signature (measurement/limit)
 - compelling <u>synergy</u> to beam results (several unknown's) \Rightarrow global picture!

θ I 3 measurement by reactors

- 3 experiments: Double Chooz (DC), Daya Bay (DB) and RENO
- θ₁₃ (large) will be measured by reactors
 - hard to improve results (or re-trigger dedicated experimental activity)
 - θ | 3 measurement to ~5% precision (eventually) \rightarrow <u>used on by everyone else</u>!
 - high precision \rightarrow multi-detector approach
 - high accuracy \rightarrow several experiments (bias-free?)
 - oscillation signature $\rightarrow \theta$ | 3 via both rate & shape
 - rate-only analysis: "any deficit" is numerically associated to θ 13 (BG, etc)
 - all results so far are rate-driven \rightarrow DC uses shape to some extent
- beams to use the "reactor $\theta \mid 3$ " \rightarrow further insight in neutrino oscillations
 - v_e appearance \Rightarrow first(??) appearance experiment (\rightarrow 5 σ s soon)
 - rich physics...
 - O(1%) precision measurement of Δ m²32, θ 23 (T2K, NOvA)
 - further information on δ and MH (with atmospheric)
 - over-constraint 3ν oscillation scenario \rightarrow NSI, sterile, exotic stuff, etc.

common technology...

15

二十二十二

inverse- β decay...

16

γ-Catcher (scintillator)

TA DESCRIPTION OF

TARGET (scintillator + Gd)

each experiment chose different sizes per detector...

pseudo common-analysis

3 experiments performed very similar analysis (almost same selection strategy)

• differences arise in BG reduction: DC and DB (detector/site dependent)

• RENO \rightarrow no BG reduction strategy

• different instrumental noise reduction and calibration (definition MeV)

• PMT light noise (or flashers) rejection (singles \rightarrow accidental)

- tagged μ (or μ related physics)
 - veto 1 ms upon each μ (most fast-n eliminated)
- prompt→ [0.7~12.0] MeV
- delay→ [6.0~12.0]MeV
- time-correlation cut used
 - no space-correlation used for cut
- showering-µ ID (tagged on total energy)
 - veto ~ Is upon each μ_{shower} (reduce Li candidates ~ I/2)
- veto on some activity on external μ detectors
 - reduce fast-n and stopped-µ

• signal dominated and signal prediction excellent evolution tracking

19

θ | 3 reactor challenges

statistics

- no problem \rightarrow eventually all experiments **plenty** (>2× $\sigma^{\text{stat}} = \sigma^{\text{syst}}$)
- with large θ | 3 \rightarrow even faster than expected (biggest, 2 detectors, etc)

• systematics I: inter-detector systematics (and MC)

- ND eliminates uncertainties \rightarrow reactor knowledge & common detection
- highest precision→ excellent detector understanding (calibration and MC)

• systematics II: backgrounds rates & shapes

- each site \rightarrow different backgrounds (both rate and shape)
 - ND more signal but also more BG (a priori not only normalisation)
- BG spectra measurement with reactor $ON \rightarrow$ very challenging
 - BG (un)knowledge→ systematics [but statistics dominated→ improving]
- warning: high-precision physics (i.e. systematics at "per-mil" level)
 - first word (fast) \rightarrow impressive θ_{13} measurement "overnight"
 - final legacy (slow) \rightarrow cross-checks for best θ_{13} world knowledge

• **Double Chooz** (1112.6353,1207.6632,1210.3748, etc)

• the (slow) pioneer: first detector design (influenced the field)

• I detector (building of ND) \rightarrow European physics signature?

• first result: θI3 large (Nov.II) rate+shape analysis

• best 1 detector results ever \rightarrow better than design

Bugey4 ("ND")+FD: current results (1 detector→ challenging)
 RENO (1204.0626,Nu2012)

• first multi-detector running in the world→ results after 229 days

• remarkable effort/success for a small collaboration (almost entirely Korean)

• Daya Bay (1203.1669,Nu2012)

• huge multi-detector complex→ FD running since 25th December 2011

• ultimate θ 13 detector \rightarrow final configuration running since Sept. 2012

• most precise measurement of θ I 3 (even with 55 days)

BG systematics...

22

Wednesday, 24 October 2012

「小子をあた

how to measure/validate BGs?

• **BG measurement:** rate (much easier) & shape (statistics limited knowledge) • CHOOZ BGs \rightarrow no say on Li (reactor OFF) \rightarrow KamLAND observed it! • **method** I: measure each dedicated BG (sample) component with reactor ON • **cons:** sub-sample (different selection) & approximations • correction/scaling \rightarrow hard to validate accuracy (precision easy) • method 2: fit θ 3 and all BGs (shape analysis) with reactor ON [only DC] • **pro:** use all knowledge a priori (method 1) \Rightarrow propagate to θ 13 (correlations) • cons: hard to interpret pull-info (degeneracies) and lack of knowledge still • method 3: direct measurement of total BG (rate) [only DC] • **pro:** a dream possibility (like CHOOZ) \rightarrow easy to validate rate measurements • **cons:** stats limited \rightarrow hard to infer BG shape information • method 4: observed vs expected correlation plot (next slides) [only DC] • **pro:** combined and direct use of reactor ON and OFF data \implies powerful! • **cons:** not used yet (\rightarrow not systematics accounted) \Rightarrow soon!!

individual measurement.. (all experiments)

Wednesday, 24 October 2012

Anatael Cabrera (CNRS-IN2P3 & APC)

cosmic-µ

accidental BG...

cosmic-µ

cosmogenic BG... (⁹Li and ⁸He)

Anatael Cabrera (CNRS-IN2P3 & APC)

Red: Best-fit Spectrum Grey: Tagged background events White: IBD Signal

correlated BG... (fast-n & stopping-µ)

cosmic-µ

more on BGs...

• Accidental BG (radio-purity + overburden)

• ~94% dominant in DB \rightarrow easy to reduce!

• appears easy to measure (if stable: rate and shape) but several components

• all correlations well taking into account? [needs validation]

• Cosmogenic Isotopes BG (overburden)

• \sim 60% dominant in DC (reduced) and RENO (not reduced)

• **unavoidable** \rightarrow reduced by ~1/2 (DC & DB) (hard to reduce more)

• not difficult to measure but **long integration** (~| event per day)

• \Rightarrow spectral shape limited info (useful for shape analysis) [DC soon]

• **Correlated BG** (overburden \rightarrow fast-neutrons and stopped- μ s)

• DC and RENO \rightarrow stopping- μ s (but DC will kill with μ -Veto)

hard to measure spectrum at low energies (reactor ON region)

• each detector-site (overburden and acceptance) \Rightarrow different shapes?

• extrapolation from $> 12 MeV \rightarrow$ can be biassed at low-energies

DC: tagging with 2 μ-detectors (IV and OV)→ spectral shape
 validated with reactor OFF data (low stats)

Anatael Cabrera (CNRS-IN2P3 & APC)

Correlated BG measurement

(only DC) direct measurement and validation BG...

³¹ fit both θ_{13} +BGs (rate+shape) simultaneously...

 fit input (a priori)→ BGs rate and shape as measured individually
 fit output (a posteriori)→ fit for θ13 while allowing BG (rate & shape) to accommodate (within uncertainties)→ newBG measurement (not independent)
 BG(after fit) < 85% BG (before fit) [⇒ less subtraction]
 also fit θ13 and BGs with 3 different selections⇒ all consistent! *Anatael Cabrera (CNRS-IN2P3 & APC)*

validation of BG models with 2 selections (BG changed by ~2x)

observed < expected (\Rightarrow fluctuation? $\sigma^{\text{stats}} < 1.5\sigma$)

Anatael Cabrera (CNRS-IN2P3 & APC)

³³ (only validation) observed vs expected rate...

•systematics uncertainties under study \Rightarrow use for oscillation in future?

Anatael Cabrera (CNRS-IN2P3 & APC)

summary BGs (per each FD)...

experiment (@FD)	accidental [day ⁻¹]	correlated [day ⁻¹]	cosmo [day ⁻¹]	BG	δ bg	δ BG/BG (%)	max. signal	BG/S (%)	δ BG/S (%)
DC-I	0.35±0.02	0.93±0.26	2.10±0.57	3.38	0.63	18.5	45	7.5	1.4
DC-II	0.261±0.002	0.67±0.20	1.25±0.54	2.18	0.58	26.4	45	4.8	1.3
DC-II (fit)	0.261±0.002	0.64±0.13	1.00±0.29	1.90	0.32	16.7	45	4.2	0.7
DC-II (OFF*)	Х	×	Х	1.00	0.40	40.0	45	2.2	0.9
reno	0.68±0.03	0.97± 0.06	2.59±0.75	4.24	0.75	17.8	80	5.3	0.9
DB (3xFD)	~3.30±0.03	~0.04±0.04	~0.16±0.11	10.50	0.21	2.0	80	3.	0.3

• cosmo & correlated **BG knowledge is statistics dominated**

•DC surprisingly (less overburden) **best BG/S** (excellent $\delta S/BG$) \rightarrow high

quality analysis (precise BG estimation & 3x validation/cross-checks)

• **DC/DB lowest BGs** (largest overburden and reduce Accidentals)

Anatael Cabrera (CNRS-IN2P3 & APC)

θ | 3 results...

Anatael Cabrera (CNRS-IN2P3 & APC)

DC Energy Spectra...

DC (June'I2)

37

S 1400

θ_{13} reactor side by side... DB (March'12) RENO (April'12)

(0.5 MeV) [0ataPredicted] [0.5 MeV] [0ataPredicted] [0.5 MeV] [0.5	Double Choos 2012 Total Data No Oscillation, Best-M Backgrou Best MF Backgrounds (see inse Lithium-9 Fast nand Stopping µ Accidentals	As 1.535 A 2.535 B 300 A 2.535 B 300 A		Fast neutron Accidental Accidental Construction Construction Prompt energy [MeV]
-	2 4 6 8 10 Ene	measured $sin^2(2\theta_{13})$	exposure (days)	arXiv
	DC-I(rate+shape)	$0.086 \pm 0.05 (0.04 stat \pm 0.030 sys)$	96.8	1112.6353
	DB(rate only)	0.092±0.017(0.016 ^{stat} ±0.005 ^{sys})	55	1203.1669
	RENO(rate only)	0.113±0.023(0.013 ^{stat} ±0.019 ^{sys})	229	1204.0626
	DC-II(rate only)	$0.170\pm0.053(0.035^{stat}\pm0.040^{sys})$	251	1207.6632
	DC-II(rate+shape)	0.109±0.039(0.030 ^{stat} ±0.025 ^{sys})	251	1207.6632
	DB-II(rate only)	0.089±0.011(0.010 ^{stat} ±0.005 ^{sys})	126	Nu2012

Anatael Cabrera (CNRS-IN2P3 & APC)

DB @ Nu2012 (not yet published)

Anatael Cabrera (CNRS-IN2P3 & APC)

highlights...

- different baselines (assuming MINOS-driven Δm^2)...
 - DC a bit **too short** \rightarrow hard to see the rise on E/L
 - RENO and DB longer \rightarrow should expect to see E/L (if BGs well understood)
 - RENO and DB: many baselines \rightarrow more diffused E/L pattern?
- E/L shape (neutrino oscillation expectation) \rightarrow a must to measure θ_{I3}
 - **BG rate & spectra** (subtracted FD and ND)
 - important: lowest S/BG (DC) and also δ BG/S (DB)
 - energy systematics (non-linearities, MC, etc)
- RENO & DB \rightarrow rate analysis ("any deficit" assumed to be θ_{13})
 - no oscillations shape compatibility \rightarrow p-value, χ^2 /ndf,...
 - RENO's spectral shape is unique (oscillations only?)
 - all experiments show some "effect" at high energies (in deficit rate)
- **DC** \rightarrow full spectral to fit θ | 3+BG (constrain both)
 - else (rate only) DC will measure a larger $\sin^2(2\theta_{13})=0.17\pm0.05$ (1.5 σ tension)
 - DC consistent with MINOS [hard to constraint Δm^2]

rate-driven uncertainties table...

		published		my guesstimate			published	published	
uncertainty (%)	DC-II (rate)	DC-II (shape)	DC -II (off*)	DC-III (FD only)	DC (ND)	RENO (abs)	RENO (rel)	DB (abs)	DB (rel)
flux									
reactor	1.7	1.7	1.7	1.7	0.8	2.0	0.9	3.0	0.8
detectio	n								
efficiency	1.1	.	.	0.8	0.2	I.5	0.2	1.9	0.2
response	0.3	0.3	0.3	0.2	0.1	Х	Х	Х	Х
background for rate analysis (δBG/S)									
cosmogenic	1.49	0.80	Х	0.28	0.28	0.71	0.71	0.27	0.27
correlated	0.55	0.36	Х	0.06	0.06	0.08	0.08	0.10	0.10
accidental	0.01	0.01	Х	0.00	0.00	0.04	0.04	0.07	0.07
total	1.59	0.88	1.10	0.28	0.28	0.72	0.72	0.30	0.30
syst total	2.6	2.2	2.3	1.9	0.9	2.6	1.2	3.6	0.9
stats total	1.1	1.1	1.1	0.7	0.5	0.8	0.8	1.0	1.0

BG uncertainties without shape uncertainty \rightarrow (only DC) increase uncertainties

published θ | 3 results summary...

$sin^2 2\theta_{13}$ Measurements

DB

- leading precision now 15% (still rate only)
- $sin^2(2\theta_{13})=0.89\pm0.10stat\pm0.05syst$

RENO

- rate only measurement
- published disappearance shape \rightarrow <u>features</u> **DC**
 - rate+shape analysis: θ_{13} +BG constraints
 - 4 ways to estimate total BGs (all consistent)
 - DC final (my <u>guesstimate</u> by scaling from DB)
 - ND-FD ~ (0.10 ± 0.010^{total})

world-wide: at least 2 experiments to validate accuracy of the measurement (different systematics: E/L, BGs, calibration, etc)

what to remember?

Anatael Cabrera (CNRS-IN2P3 & APC)

42

Wednesday, 24 October 2012

二十二十二

• θ I 3 measured by reactor experiments (will dominate for long)

- the measured value will help us to measure/constrain 3v oscillation model
- high precision (uncertainty) and high accuracy (what's the true value?)
- high precision on θ 1 3 \Rightarrow ~5% uncertainty within 3 years
 - multi-detector approach helps via cancellation of many uncertainties
- high accuracy on $\theta | 3 \rightarrow$ how to know for sure?
 - cross-check among different experiments \Rightarrow on-going slow process (transparency of collaboration is important)
 - different sites, BGs, systematics, baselines, etc help \Rightarrow the ONLY way?
 - rate+shape (E/L and BG-shape information) measurement of θ 3 a **must**

• regardless θΙ3 is LARGE

- ... if you were waiting for this, **please go ahead**! ;-)
- Asia leads... (DC slowly moving, but much of this field is DC's success)