Neutrinos and Discrete Flavor Symmetries

C. Hagedorn

hagedorn@pd.infn.it

INFN, Sezione di Padova, Italy

Neutrinos at the forefront of elementary particle physics and astrophysics Lyon, 22.10-24.10.2012

Outline

- Data on Lepton Mixing Indication of a Flavor Symmetry G_f ?
- Collection of Possibilities for Explaining Data
 - Non-trivial Breaking of G_f

(Lam ('07,'08), de Adelhart Toorop et al. ('11))

• G_f and CP

(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. (in progress))

- Sequential Breaking of G_f (some example: *Feruglio et al. (in progress)*)
- Comments on Model Realizations
- Conclusions

Data on Lepton Mixing

Results of latest global fits (Gonzalez-Garcia et al. ('12))

best fit and
$$1 \sigma$$
 error 3σ range
 $\sin^2 \theta_{12} = 0.30^{+0.013}_{-0.013}$ $0.27 \le \sin^2 \theta_{12} \le 0.34$
 $\sin^2 \theta_{23} = \begin{cases} 0.41^{+0.037}_{-0.025} \\ 0.59^{+0.021}_{-0.022} \end{cases}$ $0.34 \le \sin^2 \theta_{23} \le 0.67$
 $\sin^2 \theta_{13} = 0.023^{+0.0023}_{-0.0023}$ $0.016 \le \sin^2 \theta_{13} \le 0.030$

You might answer: yes, since

 μau Symmetry (Fukuyama/Nishiura ('97), Mohapatra/Nussinov ('99), Lam ('01), ...)

$$||U_{PMNS}|| = \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0\\ \frac{\sin \theta_{12}}{\sqrt{2}} & \frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin \theta_{12}}{\sqrt{2}} & \frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$\sin^2 \theta_{12} \quad \text{free} \ , \ \sin^2 \theta_{23} = \frac{1}{2} \ , \ \sin^2 \theta_{13} = 0$$

describes some of the data.

You might answer: yes, since

Tri-Bimaximal mixing (TB mixing) (Harrison/Perkins/Scott ('02), Xing ('02))

$$||U_{PMNS}|| = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$\sin^2 \theta_{12} = \frac{1}{3} , \quad \sin^2 \theta_{23} = \frac{1}{2} , \quad \sin^2 \theta_{13} = 0$$

describes the data still to a certain extent well.

You might answer: yes, since

Golden Ratio mixing (Kajiyama et al. ('07), Everett/Stuart ('09), Feruglio/Paris ('11))

$$||U_{PMNS}|| = \begin{pmatrix} \sqrt{\frac{1}{10}(5+\sqrt{5})} & \sqrt{\frac{2}{5+\sqrt{5}}} & 0\\ \frac{1}{\sqrt{5+\sqrt{5}}} & \sqrt{\frac{1}{20}(5+\sqrt{5})} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{5+\sqrt{5}}} & \sqrt{\frac{1}{20}(5+\sqrt{5})} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$\sin^2 \theta_{12} \approx 0.276 , \ \sin^2 \theta_{23} = \frac{1}{2} , \ \sin^2 \theta_{13} = 0$$

describes the data still to a certain extent well.

You might answer: yes, since

 $\Delta(96)$ Mixing (de Adelhart Toorop et al. ('11))

$$||U_{PMNS}|| = \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\ \frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\ 1 & 1 & 1 \end{pmatrix}$$
$$\sin^2 \theta_{12} \approx 0.349 , \quad \sin^2 \theta_{23} \approx \begin{cases} 0.349 \\ 0.651 \end{cases}, \quad \sin^2 \theta_{13} \approx 0.045$$

describes the data to a certain extent well.

You might answer: yes, since

 $\Delta(384)$ Mixing (de Adelhart Toorop et al. ('11))

$$\begin{split} ||U_{PMNS}|| &= \frac{1}{\sqrt{3}} \begin{pmatrix} \frac{1}{2}\sqrt{4+\sqrt{2}+\sqrt{6}} & 1 & \frac{1}{2}\sqrt{4-\sqrt{2}-\sqrt{6}} \\ \frac{1}{2}\sqrt{4+\sqrt{2}-\sqrt{6}} & 1 & \frac{1}{2}\sqrt{4-\sqrt{2}+\sqrt{6}} \\ \sqrt{1-\frac{1}{\sqrt{2}}} & 1 & \sqrt{1+\frac{1}{\sqrt{2}}} \end{pmatrix} \\ \sin^2\theta_{12} &\approx 0.337 \;, \; \sin^2\theta_{23} &\approx \begin{cases} 0.424 \\ 0.576 \end{cases} \;, \; \sin^2\theta_{13} \approx 0.011 \end{split}$$

describes the data quite well.

You could also answer: no, see e.g. *de Gouvea/Murayama ('12)* However, if you follow this line of thought, then you forget that in many models beyond the SM the symmetry G_f also helps to constrain the form of

- mass matrices of additional particles (e.g. soft terms in SUSY models)
- additional gauge interactions
 (e.g. in models with gauge-Higgs unification)

in flavor space.

Idea:

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

Idea:

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

Idea:

Derivation of the lepton mixing from how G_f is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_e into G_f

Further requirements

- Two/three non-trivial angles \Rightarrow irred 3-dim rep of G_f
- Fix angles through G_{ν} , $G_e \Rightarrow 3$ families transform diff. under G_{ν} , G_e

• Neutrino sector: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

$$Z_i^T m_{\nu} Z_i = m_{\nu}$$
 with $i = 1, 2$

• Charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

• Neutrino sector: $Z_2 \times Z_2$ preserved and generated by

$$egin{aligned} &Z_i = \Omega_
u Z_i^{diag} \Omega_
u^\dagger & ext{with} \quad i = 1, 2 \ &Z_i^{diag} = ext{diag} \left(\pm 1, \pm 1, \pm 1
ight) & ext{and} \quad \Omega_
u & ext{unitary} \end{aligned}$$

• Charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

• Neutrino sector: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

$$Z_i^{diag} \left[\Omega_{\nu}^T m_{\nu} \Omega_{\nu} \right] Z_i^{diag} = \left[\Omega_{\nu}^T m_{\nu} \Omega_{\nu} \right] \quad \text{with} \quad i = 1, 2$$

• Charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

$$Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$$

• Neutrino sector: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $\Omega_{
u}^{T}m_{
u}\Omega_{
u}$ is diagonal

• Charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

 $Q_e^{\dagger} m_e^{\dagger} m_e Q_e = m_e^{\dagger} m_e$

• Neutrino sector: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}$ is diagonal

• Charged lepton sector: Z_N , $N \ge 3$, preserved and generated by

$$\begin{split} Q_e &= \Omega_e Q_e^{diag} \Omega_e^{\dagger} \quad \text{with} \quad \Omega_e \quad \text{unitary} \\ Q_e^{diag} &= \text{diag} \left(\omega_N^{n_e}, \omega_N^{n_\mu}, \omega_N^{n_\tau} \right) \\ \text{and} \quad n_e \neq n_\mu \neq n_\tau \quad \text{and} \quad \omega_N = e^{2\pi i/N} \end{split}$$

• Neutrino sector: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $\Omega_{
u}^{T}m_{
u}\Omega_{
u}$ is diagonal

• Charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^\dagger m_e^\dagger m_e \Omega_e$ is diagonal

• Neutrino sector: $Z_2 \times Z_2$ preserved

ightarrow neutrino mass matrix $m_{
u}$ fulfills

 $\Omega_{
u}^{T}m_{
u}\Omega_{
u}$ is diagonal

• Charged lepton sector: Z_N , $N \ge 3$, preserved

ightarrow charged lepton mass matrix m_e fulfills

 $\Omega_e^\dagger m_e^\dagger m_e \Omega_e$ is diagonal

• Conclusion: $\Omega_{\nu,e}$ diagonalize m_{ν} and $m_e^{\dagger}m_e$

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu}$

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu}$

- 3 unphysical phases are removed by $\Omega_e \rightarrow \Omega_e K_e$
- Neutrino masses are made real and positive through $\Omega_{\nu} \rightarrow \Omega_{\nu} K_{\nu}$
- Permutations of columns of Ω_e , Ω_{ν} are possible: $\Omega_{e,\nu} \rightarrow \Omega_{e,\nu} P_{e,\nu}$

\Downarrow

Predictions.

Mixing angles up to exchange of rows/columns Dirac CP phase δ_{CP} up to π Majorana phases undetermined

1st Possibility: An Example

TB mixing from $G_f = S_4$, $G_e = Z_3$

$$||U_{PMNS}|| = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\sin^2 \theta_{12} = \frac{1}{3} , \ \sin^2 \theta_{23} = \frac{1}{2} , \ \sin^2 \theta_{13} = 0$$

<u>Idea</u>:

Relate lepton mixing to how G_f and CP are broken

An example: $\mu\tau$ reflection symmetry (Harrison/Scott ('02,'04), Grimus/Lavoura ('03)).

In principle, procedure like in 1st case, but some consistency conditions have to be fulfilled:

• Definition of generalized CP transformation (X being unitary and symmetric)

$$\phi \xrightarrow{\mathsf{CP}} X \phi^\star$$

• Assume ϕ transforms as 3-dim rep of G_f , then

$$\phi \xrightarrow{\mathsf{CP}} X\phi^* \xrightarrow{G_f} AX\phi^* \xrightarrow{\mathsf{CP}} X(AX\phi^*)^* = (X^*AX)^*\phi$$

In principle, procedure like in 1st case, but some consistency conditions have to be fulfilled:

 Definition of generalized CP transformation (X being unitary and symmetric)

$$\phi \xrightarrow{\mathsf{CP}} X \phi^\star$$

• Assume ϕ transforms as 3-dim rep of G_f , then

 $(X^*AX)^* = A'$ with $A, A' \in G_f$, but in general $A \neq A'$

In principle, procedure like in 1st case, but some consistency conditions have to be fulfilled:

• Definition of generalized CP transformation (X being unitary and symmetric)

$$\phi \xrightarrow{\mathsf{CP}} X \phi^{\star}$$

• Assume $Z_2 \subset G_{\nu}$ is given by Z and is "combined" with CP

$$\phi \xrightarrow{\mathsf{CP}} X \phi^* \xrightarrow{Z_2} Z X \phi^* \text{ and } \phi \xrightarrow{Z_2} Z \phi \xrightarrow{\mathsf{CP}} X (Z \phi)^*$$

In principle, procedure like in 1^{st} case, but some consistency conditions have to be fulfilled:

 Definition of generalized CP transformation (X being unitary and symmetric)

$$\phi \xrightarrow{\mathsf{CP}} X \phi^{\star}$$

• Assume $Z_2 \subset G_{\nu}$ is given by Z and is "combined" with CP

$$ZX - XZ^{\star} = 0$$

Now we just need to consider the neutrino sector: $G_{\nu} = Z_2 \times CP$

• Invariance conditions for m_{ν}

$$Z^T m_{\nu} Z = m_{\nu}$$
 and $X m_{\nu} X = m_{\nu}^{\star}$

Notice we can choose a basis such that

$$X = \Omega_{\nu} \Omega_{\nu}^{T}$$
 and $Z = \Omega_{\nu} Z^{diag} \Omega_{\nu}^{\dagger}$, Ω_{ν} unitary

In this basis the conditions read

$$Z^{diag}[\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]Z^{diag} = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] \text{ and } [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]^{\star}$$

Now we just need to consider the neutrino sector: $G_{\nu} = Z_2 \times CP$

In this basis the conditions read

 $Z^{diag}[\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]Z^{diag} = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] \text{ and } [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}] = [\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}]^{\star}$

- Choose $Z^{diag} = \operatorname{diag}(1, -1, 1)$
- The form of m_{ν} is constrained by

$$\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} = \begin{pmatrix} a & 0 & d \\ 0 & b & 0 \\ d & 0 & c \end{pmatrix} \quad \text{with} \quad a, b, c, d \text{ real}$$

Now we just need to consider the neutrino sector: $G_{\nu} = Z_2 \times CP$

• $\Omega_{\nu}^{T}m_{\nu}\Omega_{\nu}$ is diagonalized by

$$R(\theta) = \begin{pmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \text{ with } \tan 2\theta = \frac{2d}{c-a}$$

• Diagonal matrix K_{ν} $(\pm 1, \pm i)$ renders neutrino masses positive

 $[\]Downarrow$ m_{ν} is diagonalized by $\Omega_{\nu}R(\theta)K_{\nu}$

 $U_{PMNS} = \Omega_e^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}$

- 3 unphysical phases are removed by $\Omega_e \rightarrow \Omega_e K_e$
- U_{PMNS} contains one parameter θ
- Permutations of rows and columns of U_{PMNS} possible

 \Downarrow

Predictions:

Mixing angles and CP phases are predicted in terms of one parameter θ only, up to permutations of rows/columns

2nd Possibility: An Example

 $\mu\tau$ reflection symmetry from $G_f = S_4$, $G_e = Z_3$, one admissible X

$$U_{PMNS} = \begin{pmatrix} \frac{2}{\sqrt{6}}\cos\theta & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}}\sin\theta \\ -\frac{\cos\theta}{\sqrt{6}} + i\frac{\sin\theta}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -i\frac{\cos\theta}{\sqrt{2}} - \frac{\sin\theta}{\sqrt{6}} \\ -\frac{\cos\theta}{\sqrt{6}} - i\frac{\sin\theta}{\sqrt{2}} & \frac{1}{\sqrt{3}} & i\frac{\cos\theta}{\sqrt{2}} - \frac{\sin\theta}{\sqrt{6}} \end{pmatrix}$$

$$\sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta} , \quad \sin^2 \theta_{23} = \frac{1}{2} , \quad \sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta$$
$$|\sin \delta_{CP}| = 1 , \quad \sin \alpha = 0 , \quad \sin \beta = 0$$

 3^{rd} Possibility: Sequential Breaking of G_f <u>Idea</u>:

> We do not break G_f to G_{ν} and G_e in one step, but for example we can consider this possibility

3^{rd} Possibility: Sequential Breaking of G_f

- Consider the case M = N = 2
- If both symmetries are preserved, we know that the matrix $\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e$ is diagonal
- Choose $Q_{e,1}^{diag} = \text{diag}(1, 1, -1)$ and $Q_{e,2}^{diag} = \text{diag}(1, -1, 1)$
- The second step of breaking (Z_2 given by $Q_{e,2}$ is no longer intact) allows for

$$\Omega_e^{\dagger} m_e^{\dagger} m_e \Omega_e = \begin{pmatrix} a & d & 0 \\ d^{\star} & b & 0 \\ 0 & 0 & c \end{pmatrix}$$

3^{rd} Possibility: Sequential Breaking of G_f

• We thus need to apply a rotation

$$R(\theta) = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

in order to diagonalize $\Omega_e^\dagger m_e^\dagger m_e \Omega_e$

3^{rd} Possibility: Sequential Breaking of G_f

After the second step of breaking the PMNS matrix reads

$$U_{PMNS} = R(\theta)^T \Omega_e^{\dagger} \Omega_{\nu}$$

- Since it is a two-step breaking, we expect θ small
- Interesting example:

 $G_f = S_4$, M = N = 2; it leads to bimaximal mixing from which should be deviated by θ of order $\lambda \approx 0.22$ in order to reach agreement with data

Comments on Model Realizations

In explicit models several sources of corrections to the shown results can exist

- Higher-order corrections to $m_{\nu(e)}$ from $G_{e(\nu)}$ sector
- Corrections to the vacuum alignment from the other sector, if G_f is broken spontaneously
- Non-canonical kinetic terms
- Corrections from RG running

Conclusions

- Relation between flavor symmetry G_f , its breaking and mixing pattern
- Several ways of implementation: non-trivial breaking to $G_{e(\nu)}$, involving CP, breaking in steps
- How well these mechanisms can be realized in explicit models needs to be checked case-by-case
- In such models corrections to the above results usually arise

Thank you for your attention.

