Neutrinos and Discrete Flavor Symmetries

C. Hagedorn
hagedorn@pd.infn.it

INFN, Sezione di Padova, Italy

Neutrinos at the forefront of elementary particle physics and astrophysics
Lyon, 22.10-24.10.2012

Outline

- Data on Lepton Mixing - Indication of a Flavor Symmetry G_{f} ?
- Collection of Possibilities for Explaining Data
- Non-trivial Breaking of G_{f}
(Lam ('07,'08), de Adelhart Toorop et al. ('11))
- G_{f} and CP
(Harrison/Scott ('02,'04), Grimus/Lavoura ('03), Feruglio et al. (in progress))
- Sequential Breaking of G_{f} (some example: Feruglio et al. (in progress))
- Comments on Model Realizations
- Conclusions

Data on Lepton Mixing

Results of latest global fits (Gonzalez-Garcia et al. ('12))

$$
\begin{aligned}
& \text { best fit and } 1 \sigma \text { error } 3 \sigma \text { range } \\
& \sin ^{2} \theta_{12}=0.30_{-0.013}^{+0.013} \quad 0.27 \leq \sin ^{2} \theta_{12} \leq 0.34 \\
& \sin ^{2} \theta_{23}=\left\{\begin{array}{l}
0.41_{-0.025}^{+0.037} \\
0.59_{-0.022}^{+0.021}
\end{array} \quad 0.34 \leq \sin ^{2} \theta_{23} \leq 0.67\right. \\
& \sin ^{2} \theta_{13}=0.023_{-0.0023}^{+0.0023} \quad 0.016 \leq \sin ^{2} \theta_{13} \leq 0.030
\end{aligned}
$$

Indication of a Flavor Symmetry G_{f} ?

You might answer: yes, since
$\mu \tau$ symmetry (Fukuyama/Nishiura ('97), Mohapatra/Nussinov ('99), Lam ('01), ...)

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
\frac{\sin \theta_{12}}{\sqrt{2}} & \frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{\sin \theta_{12}}{\sqrt{2}} & \frac{\cos \theta_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
& \sin ^{2} \theta_{12} \text { free }, \sin ^{2} \theta_{23}=\frac{1}{2}, \quad \sin ^{2} \theta_{13}=0
\end{aligned}
$$

describes some of the data.

Indication of a Flavor Symmetry \boldsymbol{G}_{f} ?

You might answer: yes, since
Tri-Bimaximal mixing (TB mixing) (Harrison/Perkins/Scott ('O2), Xing ('O2))

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
& \sin ^{2} \theta_{12}=\frac{1}{3}, \quad \sin ^{2} \theta_{23}=\frac{1}{2}, \quad \sin ^{2} \theta_{13}=0
\end{aligned}
$$

describes the data still to a certain extent well.

Indication of a Flavor Symmetry G_{f} ?

You might answer: yes, since
Golden Ratio mixing (Kajiyama et al. ('07), Everett/Stuart ('09), Feruglio/Paris ('11))

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\left(\begin{array}{ccc}
\sqrt{\frac{1}{10}(5+\sqrt{5})} & \sqrt{\frac{2}{5+\sqrt{5}}} & 0 \\
\frac{1}{\sqrt{5+\sqrt{5}}} & \sqrt{\frac{1}{20}(5+\sqrt{5})} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{5+\sqrt{5}}} & \sqrt{\frac{1}{20}(5+\sqrt{5})} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
& \sin ^{2} \theta_{12} \approx 0.276, \quad \sin ^{2} \theta_{23}=\frac{1}{2}, \\
& \sin ^{2} \theta_{13}=0
\end{aligned}
$$

describes the data still to a certain extent well.

Indication of a Flavor Symmetry G_{f} ?

You might answer: yes, since

$$
\Delta(96) \text { Mixing (de Adelhart Toorop et al. ('11)) }
$$

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\frac{1}{2}(\sqrt{3}+1) & 1 & \frac{1}{2}(\sqrt{3}-1) \\
\frac{1}{2}(\sqrt{3}-1) & 1 & \frac{1}{2}(\sqrt{3}+1) \\
1 & 1 & 1
\end{array}\right) \\
& \sin ^{2} \theta_{12} \approx 0.349, \quad \sin ^{2} \theta_{23} \approx\left\{\begin{array}{cc}
0.349 \\
0.651 & , \sin ^{2} \theta_{13} \approx 0.045
\end{array}\right.
\end{aligned}
$$

describes the data to a certain extent well.

Indication of a Flavor Symmetry G_{f} ?

You might answer: yes, since
Δ (384) Mixing (de Adelhart Toorop et al. ('11))

$$
\begin{aligned}
& \left\|U_{P M N S}\right\|=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
\frac{1}{2} \sqrt{4+\sqrt{2}+\sqrt{6}} & 1 & \frac{1}{2} \sqrt{4-\sqrt{2}-\sqrt{6}} \\
\frac{1}{2} \sqrt{4+\sqrt{2}-\sqrt{6}} & 1 & \frac{1}{2} \sqrt{4-\sqrt{2}+\sqrt{6}} \\
\sqrt{1-\frac{1}{\sqrt{2}}} & 1 & \sqrt{1+\frac{1}{\sqrt{2}}}
\end{array}\right) \\
& \sin ^{2} \theta_{12} \approx 0.337, \quad \sin ^{2} \theta_{23} \approx\left\{\begin{array}{cc}
0.424 & \sin ^{2} \theta_{13} \approx 0.011 \\
0.576 & ,
\end{array}\right.
\end{aligned}
$$

describes the data quite well.

Indication of a Flavor Symmetry G_{f} ?

You could also answer: no, see e.g. de Gouvea/Murayama ('12) However, if you follow this line of thought, then you forget that in many models beyond the SM the symmetry G_{f} also helps to constrain the form of

- mass matrices of additional particles (e.g. soft terms in SUSY models)
- additional gauge interactions (e.g. in models with gauge-Higgs unification)
in flavor space.

$1^{\text {St }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

Idea:
Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

Idea:
Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

$$
G_{f}
$$

neutrinos
assume 3 generations
of Majorana neutrinos
charged leptons
distinguish 3 generations

$1^{\text {St }}$ Possibility: Non-Trivial Breaking of $\boldsymbol{G}_{\boldsymbol{f}}$

Idea:
Derivation of the lepton mixing from how G_{f} is broken Interpretation as mismatch of embedding of different subgroups G_{ν} and G_{e} into G_{f}

$$
G_{f}
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

Further requirements

- Two/three non-trivial angles \Rightarrow irred 3-dim rep of G_{f}
- Fix angles through $G_{\nu}, G_{e} \Rightarrow 3$ families transform diff. under G_{ν}, G_{e}

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

- Neutrino sector: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
Z_{i}^{T} m_{\nu} Z_{i}=m_{\nu} \quad \text { with } \quad i=1,2
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

- Neutrino sector: $Z_{2} \times Z_{2}$ preserved and generated by

$$
\begin{aligned}
& Z_{i}=\Omega_{\nu} Z_{i}^{\text {diag }} \Omega_{\nu}^{\dagger} \text { with } i=1,2 \\
& Z_{i}^{\text {diag }}=\operatorname{diag}(\pm 1, \pm 1, \pm 1) \text { and } \Omega_{\nu} \text { unitary }
\end{aligned}
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of $\boldsymbol{G}_{\boldsymbol{f}}$

- Neutrino sector: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
Z_{i}^{\text {diag }}\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] Z_{i}^{\text {diag }}=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] \text { with } i=1,2
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

- Neutrino sector: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} \text { is diagonal }
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
Q_{e}^{\dagger} m_{e}^{\dagger} m_{e} Q_{e}=m_{e}^{\dagger} m_{e}
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

- Neutrino sector: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} \text { is diagonal }
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved and generated by

$$
\begin{aligned}
& Q_{e}=\Omega_{e} Q_{e}^{\text {diag }} \Omega_{e}^{\dagger} \text { with } \Omega_{e} \text { unitary } \\
& Q_{e}^{\text {diag }}=\operatorname{diag}\left(\omega_{N}^{n_{e}}, \omega_{N}^{n_{\mu}}, \omega_{N}^{n_{\tau}}\right) \\
& \text { and } n_{e} \neq n_{\mu} \neq n_{\tau} \quad \text { and } \omega_{N}=e^{2 \pi i / N}
\end{aligned}
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

- Neutrino sector: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} \text { is diagonal }
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e} \text { is diagonal }
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of \boldsymbol{G}_{f}

- Neutrino sector: $Z_{2} \times Z_{2}$ preserved
\rightarrow neutrino mass matrix m_{ν} fulfills

$$
\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu} \text { is diagonal }
$$

- Charged lepton sector: $Z_{N}, N \geq 3$, preserved
\rightarrow charged lepton mass matrix m_{e} fulfills

$$
\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e} \text { is diagonal }
$$

- Conclusion: $\Omega_{\nu, e}$ diagonalize m_{ν} and $m_{e}^{\dagger} m_{e}$

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu}
$$

$1^{\text {st }}$ Possibility: Non-Trivial Breaking of $\boldsymbol{G}_{\boldsymbol{f}}$

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu}
$$

- 3 unphysical phases are removed by $\Omega_{e} \rightarrow \Omega_{e} K_{e}$
- Neutrino masses are made real and positive through $\Omega_{\nu} \rightarrow \Omega_{\nu} K_{\nu}$
- Permutations of columns of Ω_{e}, Ω_{ν} are possible: $\Omega_{e, \nu} \rightarrow \Omega_{e, \nu} P_{e, \nu}$

Predictions:

Mixing angles up to exchange of rows/columns
Dirac CP phase $\delta_{C P}$ up to π
Majorana phases undetermined

$1^{\text {st }}$ Possibility: An Example

TB mixing from $G_{f}=S_{4}, G_{e}=Z_{3}$

$$
\begin{gathered}
\left\|U_{P M N S}\right\|=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right) \\
\sin ^{2} \theta_{12}=\frac{1}{3}, \sin ^{2} \theta_{23}=\frac{1}{2}, \quad \sin ^{2} \theta_{13}=0
\end{gathered}
$$

$2^{\text {nd }}$ Possibility: G_{f} and CP

Idea:

Relate lepton mixing to how G_{f} and CP are broken

$$
G_{f} \& \mathrm{CP}
$$

An example: $\mu \tau$ reflection symmetry (Harrison/Scott ('02;'04), Grimus/Lavoura ('O3)).

$2^{\text {nd }}$ Possibility: G_{f} and CP

In principle, procedure like in $1^{\text {st }}$ case, but some consistency conditions have to be fulfilled:

- Definition of generalized CP transformation (X being unitary and symmetric)

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star}
$$

- Assume ϕ transforms as 3-dim rep of G_{f}, then

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star} \xrightarrow{G_{f}} A X \phi^{\star} \xrightarrow{\mathrm{CP}} X\left(A X \phi^{\star}\right)^{\star}=\left(X^{\star} A X\right)^{\star} \phi
$$

$2^{\text {nd }}$ Possibility: G_{f} and CP

In principle, procedure like in $1^{\text {st }}$ case, but some consistency conditions have to be fulfilled:

- Definition of generalized CP transformation (X being unitary and symmetric)

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star}
$$

- Assume ϕ transforms as 3-dim rep of G_{f}, then

$$
\left(X^{\star} A X\right)^{\star}=A^{\prime} \text { with } A, A^{\prime} \in G_{f}, \text { but in general } A \neq A^{\prime}
$$

$2^{\text {nd }}$ Possibility: \boldsymbol{G}_{f} and CP

In principle, procedure like in $1^{\text {st }}$ case, but some consistency conditions have to be fulfilled:

- Definition of generalized CP transformation (X being unitary and symmetric)

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star}
$$

- Assume $Z_{2} \subset G_{\nu}$ is given by Z and is "combined" with CP

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star} \xrightarrow{Z_{2}} Z X \phi^{\star} \text { and } \phi \xrightarrow{Z_{2}} Z \phi \xrightarrow{\mathrm{CP}} X(Z \phi)^{\star}
$$

$2^{\text {nd }}$ Possibility: G_{f} and CP

In principle, procedure like in $1^{\text {st }}$ case, but some consistency conditions have to be fulfilled:

- Definition of generalized CP transformation (X being unitary and symmetric)

$$
\phi \xrightarrow{\mathrm{CP}} X \phi^{\star}
$$

- Assume $Z_{2} \subset G_{\nu}$ is given by Z and is "combined" with CP

$$
Z X-X Z^{\star}=0
$$

$2^{\text {nd }}$ Possibility: G_{f} and CP

Now we just need to consider the neutrino sector: $G_{\nu}=Z_{2} \times \mathrm{CP}$

- Invariance conditions for m_{ν}

$$
Z^{T} m_{\nu} Z=m_{\nu} \quad \text { and } \quad X m_{\nu} X=m_{\nu}^{\star}
$$

- Notice we can choose a basis such that

$$
X=\Omega_{\nu} \Omega_{\nu}^{T} \quad \text { and } \quad Z=\Omega_{\nu} Z^{\text {diag }} \Omega_{\nu}^{\dagger} \quad, \quad \Omega_{\nu} \text { unitary }
$$

- In this basis the conditions read

$$
Z^{\text {diag }}\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] Z^{\text {diag }}=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] \quad \text { and }\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]^{\star}
$$

$2^{\text {nd }}$ Possibility: G_{f} and CP

Now we just need to consider the neutrino sector: $G_{\nu}=Z_{2} \times \mathrm{CP}$

- In this basis the conditions read

$$
Z^{\text {diag }}\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] Z^{\text {diag }}=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right] \quad \text { and }\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]=\left[\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}\right]^{\star}
$$

- Choose $\quad Z^{\text {diag }}=\operatorname{diag}(1,-1,1)$
- The form of m_{ν} is constrained by

$$
\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}=\left(\begin{array}{ccc}
a & 0 & d \\
0 & b & 0 \\
d & 0 & c
\end{array}\right) \text { with } a, b, c, d \text { real }
$$

$2^{\text {nd }}$ Possibility: G_{f} and CP

Now we just need to consider the neutrino sector: $G_{\nu}=Z_{2} \times \mathrm{CP}$

- $\Omega_{\nu}^{T} m_{\nu} \Omega_{\nu}$ is diagonalized by

$$
R(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right) \text { with } \tan 2 \theta=\frac{2 d}{c-a}
$$

- Diagonal matrix $K_{\nu}(\pm 1, \pm i)$ renders neutrino masses positive

$$
\Downarrow
$$

m_{ν} is diagonalized by $\Omega_{\nu} R(\theta) K_{\nu}$

$2^{\text {nd }}$ Possibility: G_{f} and CP

$$
U_{P M N S}=\Omega_{e}^{\dagger} \Omega_{\nu} R(\theta) K_{\nu}
$$

- 3 unphysical phases are removed by $\Omega_{e} \rightarrow \Omega_{e} K_{e}$
- $U_{P M N S}$ contains one parameter θ
- Permutations of rows and columns of $U_{P M N S}$ possible
\Downarrow

Predictions:

Mixing angles and CP phases are predicted in terms of one parameter θ only, up to permutations of rows/columns

$2^{\text {nd }}$ Possibility: An Example

$\mu \tau$ reflection symmetry from $G_{f}=S_{4}, G_{e}=Z_{3}$, one admissible X

$$
\begin{aligned}
& U_{P M N S}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} \cos \theta & \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \sin \theta \\
-\frac{\cos \theta}{\sqrt{6}}+i \frac{\sin \theta}{\sqrt{2}} & \frac{1}{\sqrt{3}} & -i \frac{\cos \theta}{\sqrt{2}}-\frac{\sin \theta}{\sqrt{6}} \\
-\frac{\cos \theta}{\sqrt{6}}-i \frac{\sin \theta}{\sqrt{2}} & \frac{1}{\sqrt{3}} & i \frac{\cos \theta}{\sqrt{2}}-\frac{\sin \theta}{\sqrt{6}}
\end{array}\right) \\
& \sin ^{2} \theta_{12}=\frac{1}{2+\cos 2 \theta}, \quad \sin ^{2} \theta_{23}=\frac{1}{2}, \quad \sin ^{2} \theta_{13}=\frac{2}{3} \sin ^{2} \theta \\
& \left|\sin \delta_{C P}\right|=1, \sin \alpha=0, \sin \beta=0
\end{aligned}
$$

$3^{\text {rd }}$ Possibility: Sequential Breaking of \boldsymbol{G}_{f}

Idea:
We do not break G_{f} to G_{ν} and G_{e} in one step, but for example we can consider this possibility

$3^{\text {rd }}$ Possibility: Sequential Breaking of G_{f}

- Consider the case $M=N=2$
- If both symmetries are preserved, we know that the matrix $\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e}$ is diagonal
- Choose $\quad Q_{e, 1}^{\text {diag }}=\operatorname{diag}(1,1,-1)$ and $\quad Q_{e, 2}^{\text {diag }}=\operatorname{diag}(1,-1,1)$
- The second step of breaking (Z_{2} given by $Q_{e, 2}$ is no longer intact) allows for

$$
\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e}=\left(\begin{array}{ccc}
a & d & 0 \\
d^{\star} & b & 0 \\
0 & 0 & c
\end{array}\right)
$$

$3^{\text {rd }}$ Possibility: Sequential Breaking of \boldsymbol{G}_{f}

- We thus need to apply a rotation

$$
R(\theta)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

in order to diagonalize $\Omega_{e}^{\dagger} m_{e}^{\dagger} m_{e} \Omega_{e}$

$3^{\text {rd }}$ Possibility: Sequential Breaking of G_{f}

- After the second step of breaking the PMNS matrix reads

$$
U_{P M N S}=R(\theta)^{T} \Omega_{e}^{\dagger} \Omega_{\nu}
$$

- Since it is a two-step breaking, we expect θ small
- Interesting example:
$G_{f}=S_{4}, M=N=2$; it leads to bimaximal mixing from which should be deviated by θ of order $\lambda \approx 0.22$ in order to reach agreement with data

Comments on Model Realizations

In explicit models several sources of corrections to the shown results can exist

- Higher-order corrections to $m_{\nu(e)}$ from $G_{e(\nu)}$ sector
- Corrections to the vacuum alignment from the other sector, if G_{f} is broken spontaneously
- Non-canonical kinetic terms
- Corrections from RG running
- ...

Conclusions

- Relation between flavor symmetry G_{f}, its breaking and mixing pattern
- Several ways of implementation: non-trivial breaking to $G_{e(\nu)}$, involving CP, breaking in steps
- How well these mechanisms can be realized in explicit models needs to be checked case-by-case
- In such models corrections to the above results usually arise

Thank you for your attention.

