Double-Beta Decay Searches in 2012 (and beyond)

François Mauger

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

LIO neutrino, Lyon, October 22-24, 2012
What is double beta decay (DBD)?

The 2-neutrino DBD ($2\nu\beta\beta$)
[Goepert-Mayer, 1935]

$$A^ZX \rightarrow A^{Z+2}Y + 2e^- + 2\bar{\nu}_e$$

- $\Delta L = 0$
- Allowed in SM
- Decay rate: slow (second order weak process) and $\sim Q^{11}_{\beta\beta}$
- Can be calculated:
 $$\left(T^{2\nu}_{1/2} \right)^{-1} = G_{2\nu}(Q_{\beta\beta}, Z) \times |M_{2\nu}|^2$$
- Has been measured:
 $$T^{2\nu}_{1/2} \simeq 10^{18} - 10^{21} \text{ yr}$$
- Not very interesting... but...
What is neutrinoless double beta decay (DBD) ?

The neutrinoless DBD (0$\nu\beta\beta$) [Furry, 1939]

$$^{A}ZX \rightarrow ^{A}Z_{+2} Y + 2e^-$$

- $\Delta L = 2$!!!
- Forbidden in SM !!!
- Decay rate is :

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) \times |M_{0\nu}|^2 \times \eta$$

Expected $T_{1/2}^{0\nu} >> T_{1/2}^{2\nu}$

- η contains new physics !
 - Lepton number violation

Several mechanisms can be envisaged : massive Majorana neutrino exchange, Majoron emission, SUSY...
What is neutrinoless double beta decay (DBD)?

The neutrinoless DBD \((0\nu\beta\beta)\) [Furry, 1939]

\[_Z^A X \longrightarrow _{Z+2}^A Y + 2e^- \]

- \(\Delta L = 2 \) !!!
- Forbidden in SM !!!
- Decay rate is:

\[(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) \times |M_{0\nu}|^2 \times \eta \]

Expected \(T_{1/2}^{0\nu} \gg T_{1/2}^{2\nu}\)

- \(\eta\) contains new physics!
 - Lepton number violation
 - Effective light Majorana neutrino mass \(< m_\nu \neq 0\)

The only natural \(W^- W^-\) collider available!
The game: counting decays...

Example: a DBD experiment using ^{76}Ge (ala HM)

- $G_{0\nu}(Q, Z) = 0.623 \times 10^{-14} \text{ y}^{-1}$ ($Q_{\beta\beta} = 2039$ keV)
- $M_{0\nu} \simeq [3 - 6]$ (dimensionless) \rightarrow Large theor. uncertainty!
- $T_{1/2}^{0\nu} \simeq 2 \times 10^{25} \text{ y}$ (HM) $\sim m_{\nu} \simeq [0.25 - 0.5]$ eV

Running an ideal experiment with $t=5 \text{ y}$, $M=10$ kg of ^{76}Ge, $\varepsilon=100\%$ efficiency (exposure $M \times t=50 \text{ kg.y}$):

$$N_{\text{decay}}^{0\nu} = \frac{N_{A} M \varepsilon t \log 2}{A} \frac{T_{1/2}^{0\nu}}{T_{1/2}^{0\nu}}$$

This gives: $N_{\text{decay}}^{0\nu} \simeq 14$ expected decays

- But typical natural radioactivity ($^{232}\text{Th, } ^{238}\text{U...}$) is $\simeq 1\text{-}100$ Bq/kg:

$$N_{\text{decay}}^{\text{radioactivity}} = a \times t \times M$$

and gives: $N_{\text{decay}}^{\text{radioactivity}} \simeq [1 - 100] \times 10^{9}$ nasty decays !!!
Radioactivity background is the enemy!

Background sources...

- Natural radioactivity energy scale: 1-5 MeV $\approx Q_{\beta\beta}$
- 232Th, 238U, 235U chains: plenty of α, β and γ emitters
- Special mention for 226Ra ($T_{1/2}=1800$ y) and 222Rn (gas, $T_{1/2}=3.8$ days) and (β/α) decay products
- Very special mention for 214Bi ($Q_{\beta}=3.2$ MeV) and 208Tl ($Q_{\beta}=5$ MeV, $E_{\gamma}=2.614$ MeV)
- Fission neutrons from surrounding rocks $\sim (n,\gamma)$ reactions (>3 MeV)
- Also cosmic muons:
 - spallation and thus unstable cosmogenic isotopes
 - bremsstrahlung \sim high-energy $\gamma \sim e^-, e^+$
- Possible artificial radioactive contaminants may also be a problem.
- $2\nu\beta\beta$ decays (ultimate background in some cases).
Recipe for a DBD experiment

How to make it?

- Collect a large mass of some enriched isotope(s) as the DBD source (≳ 100 mol)
- Purify this DBD source with some radiochemistry processes (for example removing Radium to break the U decay chain)
- Select ultra-low radioactivity materials to build the $\beta\beta$ detector (1μBq/kg – 1mBq/kg, remove Radon from gas)
- Bury the experimental setup deep underground (\gtrsim1000 m.w.e, protection against cosmic rays)
- Shield against environmental radioactivity ($n, \gamma, \mu, {}^{222}\text{Rn}$)
- Invent some technique(s) to discriminate $0\nu\beta\beta$ signal from background(s)
Recipe for a DBD experiment

How to make it?

- Collect a large mass of some enriched isotope(s) as the DBD source ($\gtrsim 100$ mol)
- Purify this DBD source with some radiochemistry processes (for example removing Radium to break the U decay chain)
- Select ultra-low radioactivity materials to build the $\beta\beta$ detector (1μBq/kg – 1mBq/kg, remove Radon from gas)
- Bury the experimental setup deep underground ($\gtrsim 1000$ m.w.e, protection against cosmic rays)
- Shield against environmental radioactivity (n, γ, μ, 222Rn)
- Invent some technique(s) to discriminate $0\nu\beta\beta$ signal from background(s)
- Switch on the detector, seat down and wait... wait... wait...
Recipe for a DBD experiment

Experimental questions

- What isotopes to be used for DBD search?
- What technology to discover/invalidate $0\nu\beta\beta$ process?
- How to improve the radiopurity of the experimental setup and background rejection performance?
- How does it cost in terms of time, effort, money...hope?
- How does it scale for a future larger experiment with improved sensitivity?
- Does a best experimental approach exist?
Isotopes of experimental interest

<table>
<thead>
<tr>
<th>Isotope</th>
<th>$Q_{\beta\beta}$ [keV]</th>
<th>Nat. abund. (enr.) [%]</th>
<th>$G_{0\nu} \big(\tilde{G}_{0\nu}^{76} \big)$ $[10^{-14} \ (y^{-1})]^a$</th>
<th>$M_{0\nu}^a$</th>
<th>$T_{1/2, \text{exp}}^{2\nu}$ $[10^{19} \ (y)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{48}Ca</td>
<td>4270</td>
<td>0.187 (73^b)</td>
<td>6.35 (16.15)</td>
<td>0.85 – 2.37</td>
<td></td>
</tr>
<tr>
<td>^{76}Ge</td>
<td>2039</td>
<td>7.83 (86c)</td>
<td>0.623 (1)</td>
<td>2.81 – 7.24</td>
<td>155f</td>
</tr>
<tr>
<td>^{82}Se</td>
<td>2995</td>
<td>8.73 (97b)</td>
<td>2.70 (4)</td>
<td>2.64 – 6.46</td>
<td></td>
</tr>
<tr>
<td>^{96}Zr</td>
<td>3350</td>
<td>2.8 (57b)</td>
<td>5.63 (7.1)</td>
<td>1.56 – 5.65</td>
<td>0.716e</td>
</tr>
<tr>
<td>^{100}Mo</td>
<td>3034</td>
<td>9.63 (99b)</td>
<td>4.36 (5.3)</td>
<td>3.103 – 7.77</td>
<td></td>
</tr>
<tr>
<td>^{116}Cd</td>
<td>2802</td>
<td>7.49 (93b)</td>
<td>4.62 (4.8)</td>
<td>2.51 – 4.72</td>
<td>2.88e</td>
</tr>
<tr>
<td>^{130}Te</td>
<td>2527</td>
<td>34.08 (90b)</td>
<td>4.09 (3.8)</td>
<td>2.65 – 5.50</td>
<td>70e</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>2480</td>
<td>8.857 (80d)</td>
<td>4.31 (3.9)</td>
<td>1.71 – 4.2</td>
<td>211g</td>
</tr>
<tr>
<td>^{150}Nd</td>
<td>3367</td>
<td>5.6 (91b)</td>
<td>19.2 (15.6)</td>
<td>1.71 – 3.7</td>
<td></td>
</tr>
</tbody>
</table>

Q: below 2.6 MeV γ-line (^{208}Tl), below 3.2 MeV Q-value (^{214}Bi)

$\tilde{G}_{0\nu}^{76} = (G_{0\nu}/A)$ then normalized to the value for ^{76}Ge

$M_{0\nu}$: small theor. value or difficult to compute...

a from PRD 83, 113010 (2011)

b achieved in NEMO-3, c achieved in HM, d achieved in EXO-200

e from NEMO3 (see TAUP 2011), f from HM, g from EXO-200 (arXiv-1108.4193)
Measuring the electron energy sum spectrum \(Q_{\beta\beta} \)

- Use a Calorimeter:
 measurement of the energy sum of both electrons emitted in \(\beta\beta \) processes

![Diagram showing a Calorimeter scope with \(\beta\beta \) source and \(\beta\beta \) decay points, indicating energy sum \(E_1 + E_2 \).]

- New Physics!

\[\frac{dN}{dE} \]

- Indices:
 - \(2\nu\beta\beta \)
 - \(0\nu\beta\beta_X \)
 - \(0\nu\beta\beta \)

\(Q_{\beta\beta} \)

Counts/keV/kg/y: typical \(B \sim 0.1 \pm 0.001 \) counts/keV/kg/y

- Particle identification (\(\gamma, e^- , e^+ , \alpha \ldots \))
Measuring the electron energy sum spectrum @ $Q_{\beta\beta}$

- **Use a Calorimeter**: measurement of the energy sum of both electrons emitted in $\beta\beta$ processes.
- A critical criterion for signal/background discrimination in the $Q_{\beta\beta}$ ROI.
Measuring the electron energy sum spectrum @ $Q_{\beta\beta}$

- Use a **Calorimeter**: measurement of the energy sum of both electrons emitted in $\beta\beta$ processes
- A critical criterion for signal/background discrimination in the $Q_{\beta\beta}$ ROI
- High energy resolution is a must
Measuring the electron energy sum spectrum @ $Q_{\beta\beta}$

- **Use a Calorimeter**: measurement of the energy sum of both electrons emitted in $\beta\beta$ processes
- A critical criterion for signal/background discrimination in the $Q_{\beta\beta}$ ROI
- High energy resolution is a must
- Introducing the background index: typical $B \sim 0.1 - 0.001$ counts/keV/kg/y
Measuring the electron energy sum spectrum @ $Q_{\beta\beta}$

- Use a **Calorimeter**: measurement of the energy sum of both electrons emitted in $\beta\beta$ processes
- A critical criterion for signal/background discrimination in the $Q_{\beta\beta}$ ROI
- High energy resolution is a must
- Introducing the **background index**: typical $B \sim 0.1 - 0.001$ counts/keV/kg/y
- Additional criteria: particle identification (γ, e^-, e^+, α...)

![Diagram showing electron energy spectrum with $Q_{\beta\beta}$ and $E_1 + E_2$ axes]
Experimental half-life sensitivity

- Background-free (lower limit):

\[T_{1/2}^{0\nu} \gtrsim \frac{N_A \ln 2}{n_\sigma} \left(\frac{a \times \varepsilon}{A} \right) M \times t \]

- Background limited (lower limit):

\[T_{1/2}^{0\nu} \gtrsim \frac{N_A \ln 2}{n_\sigma} \left(\frac{a \times \varepsilon}{A} \right) \sqrt{\frac{M \times t}{B \times \Delta E}} \]

where:
- \(n_\sigma \) the number of standard deviations at desired CL,
- \(a \) the isotopical abundance,
- \(M \) the mass of the source,
- \(t \) the measuring time,
- \(\varepsilon \) the efficiency,
- \(\Delta E \) the energy resolution at peak position (ROI),
- \(B \) the background index in the ROI (counts/keV/kg/y).

\[\langle m_\nu \rangle \sim (M \times t)^{1/4} \]

\[\langle m_\nu \rangle \sim (M \times t)^{1/2} \]

\[B = 0.001 \text{ counts/keV/kg/y} \]

\[B = 0.01 \text{ counts/keV/kg/y} \]
Experimental approaches

Calorimeter
- Detector = DBD source
- Excellent $\Delta E/E$
- Large efficiency
- Compact
- Address only one DBD isotope (76Ge, 130Te...)
- Limited particle identification
- Techniques: Semiconductor, Bolometer, (Liquid-)Scintillator (136Xe, 150Nd)

Tracker
- Detector \neq DBD source
- Limited $\Delta E/E$
- Limited efficiency
- Not so compact
- Isotope flexibility (100Mo, 82Se, 150Nd, 48Ca...)
- Particle identification and event topology
- Probe \neq mechanisms
- Techniques: Drift chamber, TPC
Experimental approaches

Calorimeter
- Detector = DBD source
- Excellent $\Delta E/E$
- Large efficiency
- Compact
- Address only one DBD isotope (^{76}Ge, ^{130}Te...)
- Limited particle identification
- Techniques: Semiconductor, Bolometer, (Liquid-)Scintillator (^{136}Xe, ^{150}Nd)

Tracker
- Detector \neq DBD source
- Limited $\Delta E/E$
- Limited efficiency
- Not so compact
- Isotope flexibility (^{100}Mo, ^{82}Se, ^{150}Nd, ^{48}Ca...)
- Particle identification and event topology
- Probe \neq mechanisms
- Techniques: Drift chamber, TPC

Hybrid
- Elements (best) of both
- Gaseous (Xe) TPC
- Pixelated calorimeter (CdZnTe)
It there a "best" technique for DBD?

- Each technique has its own problems in terms of source enrichment, source purification and, last but definitively not the least, background(s).

Diagram

- **Small**
 - Liquid scintillator
 - Liquid Xe
 - Ionisation/Bolometer
 - Isotope mass

- **Large**
 - SNO+ (>100 kg 150Nd)
 - B(ROI) ≈ 10’s
 - EXO (80 kg 136Xe)
 - B(ROI) ≈ several

- **Background**
 - GERDA
 - 30 kg 76Ge
 - B(ROI) ≈ 5
 - Tracker/Calo.
 - SuperNEMO
 - 7 kg 82Se
 - B(ROI) < 1
 - Gas Xe TPC?

- **High**
- **Low**

A selection of experiments

F. Mauger

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France
Experimental approaches

It there a “best” technique for DBD?

- Each technique has its own problems in terms of source enrichment, source purification and, last but definitively not the least, background(s).
- None is zero-background experiment (but some could pretend to be...)

<table>
<thead>
<tr>
<th>Isotope mass</th>
<th>Source</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>Liquid scintillator</td>
<td>High</td>
</tr>
<tr>
<td>Large</td>
<td>Liquid Xe</td>
<td>Background</td>
</tr>
<tr>
<td>Large</td>
<td>Gas Xe TPC?</td>
<td>Low</td>
</tr>
<tr>
<td>Medium</td>
<td>Ionisation/Bolometer</td>
<td>Large</td>
</tr>
<tr>
<td>Small</td>
<td>Tracker/Calo.</td>
<td>Small</td>
</tr>
</tbody>
</table>

- SNO+ (>100 kg 150Nd) B(ROI) \sim 10’s
- EXO (80 kg 136Xe) B(ROI) \sim several
- GERDA (30 kg 76Ge) B(ROI) \sim 5
- SuperNEMO (7 kg 82Se) B(ROI) < 1

A selection of experiments
Experimental approaches

It there a “best” technique for DBD?

- Each technique has its own problems in terms of source enrichment, source purification and, last but definitely not the least, background(s)
- None is zero-background experiment (but some could pretend to be…)
- Each realizes a kind of compromise

<table>
<thead>
<tr>
<th>Isotope mass</th>
<th>Large</th>
<th>High</th>
<th>Background</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid scintillator</td>
<td>SNO+ (>100 kg 150Nd) B(ROI) \sim several</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid Xe</td>
<td>EXO (80 kg 136Xe) B(ROI) \sim several</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Xe TPC?</td>
<td>SuperNEMO 7 kg 82Se B(ROI) < 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ionisation/Bolometer</td>
<td>Tracker/Calo.</td>
<td>GERDA 30 kg 76Ge B(ROI) \sim 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A selection of experiments
Experimental approaches

It there a “best” technique for DBD?

- Each technique has its own problems in terms of source enrichment, source purification and, last but definitively not the least, background(s)
- None is zero-background experiment (but some could pretend to be...)
- Each realizes a kind of compromise
- Some approaches exist to get the best available...

<table>
<thead>
<tr>
<th>Isotope mass</th>
<th>High</th>
<th>Background</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SNO+ (>100 kg 150Nd) $B(ROI)$ sim 10’s
- EXO (80 kg 136Xe) $B(ROI)$ ∼ several
- GERDA $30 \text{ kg }^{76}\text{Ge}$ $B(ROI) \sim 5$
- SuperNEMO $7 \text{ kg }^{82}\text{Se}$ $B(ROI) < 1$
- A selection of experiments
Where we are now!

- ~1990-2000: HM experiment (76Ge)

- 2000-2010: $\simeq 10$ kg
 - Cuoricino (130Te, 2008)
 - NEMO3 (100Mo, 2011)

- 2011+: New generation experiments
 - $\simeq 10$-100 kg
 - EXO200 (136Xe)
 - Kamland-ZEN (136Xe)

- → 2015: Start to investigate IH region
- Beyond 2015: cover IH?
 - $\simeq 100$-1000 kg

\[\langle m_{\nu} \rangle (\text{eV}) \]

\[\Delta m_{23}^2 > 0 \]

\[\Delta m_{23}^2 < 0 \]

Normal (NH)

Inverted hierarchy (IH)

Quasi-degenerate

disfavoured by $0\nu\beta\beta$

F. Mauger
LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

[Strumia & Vissani, hep-ph/0606054]
Where we are now!

- ~1990-2000: HM experiment (76Ge)
- ~2000-2010: $\simeq 10$ kg
 - Cuoricino (130Te, 2008)
 - NEMO3 (100Mo, 2011)

$\Delta m^2_{23} < 0$
$\Delta m^2_{23} > 0$

Lightest neutrino mass (eV)

[Normal (NH)]

90% CL (1 dof)

[Inverse hierarchy (IH)]

[HM Cuoricino NEMO3]

Disfavoured by 0νββ

[Strumia & Vissani, hep-ph/0606054]
Where we are now!

- **~1990-2000**: HM experiment (76Ge)
 - **~2000-2010**: ≃10 kg
 - Cuoricino (130Te, 2008)
 - NEMO3 (100Mo, 2011)
- **~2011+**: New generation experiments
 - ≃10-100 kg
 - First stimulating results:
 - EXO200 (136Xe)
 - Kamland-ZEN (136Xe)

![Graph showing neutrino mass and mixing](image)

[Strumia & Vissani, hep-ph/0606054]
Where we are now!

- **∼1990-2000**: HM experiment \(^{76}\text{Ge} \)
- **∼2000-2010**: \(\simeq 10 \text{ kg} \)
 - Cuoricino \(^{130}\text{Te}, 2008 \)
 - NEMO3 \(^{100}\text{Mo}, 2011 \)
- **∼2011+**: New generation experiments
 \(\simeq 10-100 \text{ kg} \)
 First stimulating results:
 - EXO200 \(^{136}\text{Xe} \)
 - Kamland-ZEN \(^{136}\text{Xe} \)
- **→2015**: Start to investigate IH region

\[\Delta m_{23}^2 < 0 \] (Inverted hierarchy (IH))
\[\Delta m_{23}^2 > 0 \] (Normal (NH))

90 % CL (1 dof)

[Strumia & Vissani, hep-ph/0606054]
Where we are now!

- **1990-2000**: HM experiment (^{76}Ge)
- **2000-2010**: ≈10 kg
 - Cuoricino (^{130}Te, 2008)
 - NEMO3 (^{100}Mo, 2011)
- **2011+**: New generation experiments
 - ≈10-100 kg
 - First stimulating results:
 - EXO200 (^{136}Xe)
 - Kamland-ZEN (^{136}Xe)
- →2015: Start to investigate IH region
- Beyond 2015: cover IH?
 - ≈100-1000 kg

[Strumia & Vissani, hep-ph/0606054]
Next generation of experiments

Calorimeter

- Ge diode $\varepsilon, \Delta E$ 76Ge
- Bolometers $\varepsilon, \Delta E$ 130Te, 82Se, 100Mo
- Liquid Xe $\varepsilon, M, (N_{\text{Bckd}})$ 136Xe
- Scintillator ε, M 136Xe, 82Se, 100Mo

Tracker

- Tracko-calo $N_{\text{Bckd}},$ isotopes 82Se (150Nd, 48Ca)
- Pixellized CdZnTe $\varepsilon, N_{\text{Bckd}}$ 116Cd
- TPC $\varepsilon, N_{\text{Bckd}}$ 136Xe, 150Nd

- GERDA
- MAJORANA
- CUORE
- LUCIFER
- ZnMo4
- EXO
- KamLAND-Zen CANDLES SNO+ Borexino CdWO4 AMoRE
- SuperNEMO
- COBRA
- MTD EXO-gas NEXT
GERDA – Calorimeter, ^{76}Ge

- Bare detectors in liquid argon for effective background suppression
- Re-use HM & IGEX crystals
- Phase 1 data-taking: 18 kg $^{\text{enr}}\text{Ge}$
- Sensitivity to Klapdor claim soon
- $^{42}\text{Ar}/^{42}\text{K}$ problem now solved
- Phase 1: $B \sim 0.02$ counts/keV/kg/y
- Phase 2 target: $B \sim 10^{-3}$ counts/keV/kg/y
- See also the MAJORANA project
CUORE – Calorimeter, ^{130}Te

- ^{nat}Te bolometer experiment
 (^{130}Te, 34% natural abundance)
- Te02 crystal: low heat capacity, high intrinsic radio-purity
- Operated at 8-10 mK
- 19 towers ~ 200 kg ^{130}Te
- Background target:
 10-100 smaller than CUORICINO
 $B \sim 5 \times 10^{-2} - 5 \times 10^{-3}$ counts/keV/kg/y
- 2011-2018: $t=5$ year
 $<m_\nu> \approx 40-100$ meV

![CUORE Experiment Image]
SuperNEMO – Calorimeter+Tracker, ^{82}Se

- Tracker/Calorimeter ala NEMO3 experiment
- Demonstrator module: 7 kg of ^{82}Se ($\times 2.5$ y)
- Prove $B \sim 10^{-4}$ counts/keV/kg/y
- Limit: $T_{1/2}^{0\nu} \sim 6.5 \times 10^{24}$ y
- Construction started, running 2015-2016 (LSM)
- Prove scalability for a full-scale 20 modules with:
 - 100 kg \times 2016-2020
 - $T_{1/2}^{0\nu} \sim 10^{26}$ y, $<m_\nu> = 40$-100 meV
- R&D for ^{48}Ca, ^{150}Nd
SuperNEMO – Calorimeter+Tracker, ^{82}Se

- Tracker/Calorimeter ala NEMO3 experiment
- Demonstrator module: 7 kg of ^{82}Se ($\times 2.5$ y)
- Prove $B \sim 10^{-4}$ counts/keV/kg/y
- Limit: $T_{1/2}^{0\nu} \sim 6.5 \times 10^{24}$ y
- Construction started, running 2015-2016 (LSM)
- Prove scalability for a full-scale 20 modules with:
 - 100 kg \times 2015-2020
 - $T_{1/2}^{0\nu} \sim 10^{26}$ y, $<m_{\nu}> =$ 40-100 meV
- R&D for ^{48}Ca, ^{150}Nd
EXO-200 – Calorimeter, 136Xe

- Liquid-xenon TPC with ionisation & scintillation readout
- Fiducial mass of 79.4 kg of 136Xe for the $0\nu\beta\beta$ search.

136Xe $2\nu\beta\beta$ measurement:

$$T_{1/2}^{2\nu\beta\beta} = 2.11 \pm 0.04\text{(stat.)} \pm 0.21\text{(syst.)} \times 10^{21}\text{ yr}$$

Ackerman et al. (2011)

1 event observed in 1σ ROI around $Q_{\beta\beta}$ vs. 4.1 background events expected.

33 kg.yr $B \sim 0.0015$ cts/keV/kg/yr

$$T_{1/2}^{0\nu\beta\beta} > 1.6 \times 10^{25}\text{ yr} \; @\; 90\% \text{ C.L.}$$

$$\langle m \rangle < 140 - 380 \text{ meV}$$

Auger et al. (2012)
KamLAND-ZEN – Calorimeter, ^{136}Xe

- Several $0\nu\beta\beta$ isotopes compatible with LS.
- Large masses can be loaded.
- Reasonable energy resolution: $\sigma_E = 6.6\%/\sqrt{E}$ (MeV)

$^{136}\text{Xe}(2\nu\beta\beta)$, $Q(\beta\beta) = 2.5$ MeV

- $T^{2\nu}_{1/2} = 2.38 \pm 0.14 \times 10^{21}$ yr
- $T^{0\nu}_{1/2} > 5.7 \times 10^{24}$ yr @ 90% C.L.
- $\langle m_{\beta\beta} \rangle < (0.3 - 0.6)$ eV

- Currently background limited (Fukushima).
- Reduce backgrounds by factor 100, increase ^{136}Xe mass and use brighter scintillator.
 - target of $<m_e> \sim 20-40$ meV

Fall-out: ^{110m}Ag, ^{208}Bi (?) produces $E \sim 2.6$ MeV
SNO+ – Calorimeter, 150Nd

- SNO detector filled with 800 tonnes of LS: Linear Alkyl-Benzene + 2g/litre PPO fluor.
- Broad physics program: solar/geo-ν; SN; 0νββ
- Major engineering challenges.
- Extremely stringent radiopurity requirements:
 - $< 10^{-17} \text{ g } ^{226}\text{Ra}/^{228}\text{Th per g scintillator}$.
 - $< 10^{-14} \text{ g } ^{226}\text{Ra}/^{228}\text{Th per g Nd}$
- Purification proof of principle: KamLAND/Borexino.

![Diagram of SNO+ detector with hold-down ropes and energy spectrum](image)

Optimal loading $\sim 0.3\%$

$M(\text{^{150}Nd}) \sim 135 \text{ kg}$

$\frac{\sigma(E)}{E} = 6 - 7\% \text{ @ } 1 \text{ MeV}$

Sensitivity:

- 3 years of data
- $\langle m \rangle \sim 100 \text{ meV}$
Summary [1]

- DBD physics is a major concern for particle physics:
 - Lepton number non conservation
 - Majorana neutrino
 - Neutrino mass, “exotic” weak coupling, SUSY

- Interplay with other ν mass measurements, hierarchy problem and oscillation experiments

- A new generation experiments (10-100kg) have started or will within few years:
 - We are entering the era of 100 kg scale DBD experiments
 - Different isotopes, techniques, mass and backgrounds
 - Lots of experimental efforts are done to improve, step by step, the sensitivity of DBD detectors
 - Some very interesting results are expected within a few years (GERDA, EXO, KAMLAND, SNO+, CUORE... SuperNEMO...)
 - We need a few years to make our mind about the best way(s), maybe 1-2 techniques remaining in the future (2020+)
 - In the meanwhile, some R&D programs with (promising) novel techniques has started (scintillating bolometers, tracker crystals, gas TPC...)
Summary [2]

After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!
Summary [2]

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: **background exists!**
- No technique has proven its scalability to 1 ton (IH) so far
Summary [2]

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)

However: DBD physics MUST be investigated (and supported) by the scientific community

Despite the background challenge it is [a kind of nightmare]

Despite funding issues [another kind of nightmare]

Despite maybe there are no chance to go further (IH, NH) but we still don't know

Thanks to the motivation of many skilled groups worldwide

Message for the newborn LIO: please consider carefully to join some DBD experimental program!

F. Mauger
LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France
After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!

- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)

However: DBD physics **MUST** be investigated (and supported) by the scientific community

Despite the background challenge it is [a kind of nightma re]

Despite funding issues [another kind of nightma re]

Despite maybe there are no chance to go further (IH, NH) but we still don't know

Thanks to the motivation of many skilled groups worldwide

Message for the new born LIO: please consider carefully to join some DBD experimental program!
Summary [2]

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However: DBD physics MUST be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]
Summary [2]

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However: DBD physics **MUST** be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]
 - Despite funding issues [another kind of nightmare]
After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!

No technique has proven its scalability to 1 ton (IH) so far

No technique has even proven/reached its background target for the 100 kg scale (QD)

However: DBD physics MUST be investigated (and supported) by the scientific community

- Despite the background challenge it is [a kind of nightmare]
- Despite funding issues [another kind of nightmare]
- Despite maybe there are no chance to go further (IH, NH) but we still don’t know
After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!

No technique has proven its scalability to 1 ton (IH) so far

No technique has even proven/reached its background target for the 100 kg scale (QD)

However: DBD physics MUST be investigated (and supported) by the scientific community

- Despite the background challenge it is [a kind of nightmare]
- Despite funding issues [another kind of nightmare]
- Despite maybe there are no chance to go further (IH, NH) but we still don’t know
- Thanks to the motivation of many skilled groups worldwide
Summary [2]

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real: background exists!
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However: DBD physics MUST be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]
 - Despite funding issues [another kind of nightmare]
 - Despite maybe there are no chance to go further (IH, NH) but we still don’t know
 - Thanks to the motivation of many skilled groups worldwide
- Message for the newborn LIO: please consider carefully to join some DBD experimental program!
Thanks (for stolen slides and pictures)

- ...

Apologies and also best wishes for

- AMoRE (100Mo)
- CANDLES (48Ca)
- COBRA (116Cd)
- DCBA (100Mo/150Nd)
- LUCIFER(82Se/100Mo)
- MAJORANA (76Ge)
- MOON (100Mo)
- NEXT (136Xe)
- XMASS (136Xe)
- ZnMo4 (100Mo), CdMo4 (116Cd)