

Double-Beta Decay Searches in 2012 (and beyond)

François Mauger

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

LIO neutrino, Lyon, October 22-24, 2012

What is double beta decay (DBD) ?

The 2-neutrino DBD $(2\nu\beta\beta)$ [Goeppert-Mayer, 1935]

$$^{A}_{Z}X \longrightarrow^{A}_{Z+2} Y + 2e^{-} + 2\bar{\nu}_{e}$$

• $\Delta L = 0$

- Allowed in SM
- Decay rate : slow (second order weak process) and $\sim Q^{11}_{\beta\beta}$
- Can be calculated :

 $(T_{1/2}^{2\nu})^{-1} = G_{2\nu}(Q_{\beta\beta}, Z) \times |M_{2\nu}|^2$

• Has been measured :

$$T_{1/2}^{2\nu} \simeq 10^{18} - 10^{21} \text{ yr}$$

• Not very interesting...but...

What is neutrinoless double beta decay (DBD) ?

The neutrinoless DBD $(0 u\beta\beta)$ [Furry, 1939]

 ${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+2}Y + 2e^{-}$

- $\Delta L = 2 !!!$
- Forbidden in SM !!!
- Decay rate is :

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) \times |M_{0\nu}|^2 \times \eta$$

Expected $T_{1/2}^{0\nu} >> T_{1/2}^{2\nu}$

- η contains new physics !
 - Lepton number violation
 - Majorana neutrino [PRD 25 (1982) 2951]

Several mechanisms can be envisaged : massive Majorana neutrino exchange, Majoron emission, SUSY...

What is neutrinoless double beta decay (DBD) ?

The neutrinoless DBD $(0\nu\beta\beta)$ [Furry, 1939]

 $^{A}_{Z}X \longrightarrow^{A}_{Z+2}Y + 2e^{-}$

- $\Delta L = 2 !!!$
- Forbidden in SM !!!
- Decay rate is :

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) \times |M_{0\nu}|^2 \times \eta$$

Expected $T_{1/2}^{0\nu} >> T_{1/2}^{2\nu}$

- η contains new physics !
 - Lepton number violation
 - Majorana neutrino [PRD 25 (1982) 2951]
 - Effective light Majorana neutrino mass < m_ν >≠ 0

The only natural W^-W^- collider available !

The game : counting decays...

Example: a DBD experiment using ⁷⁶Ge (ala HM)

- $G_{0\nu}(Q,Z) = 0.623 \ 10^{-14} \ \mathrm{y}^{-1} \ (Q_{\beta\beta} = 2039 \ \mathrm{keV})$
- $M_{0\nu} \simeq [3 6]$ (dimensionless) \longrightarrow Large theor. uncertainty !
- $T_{1/2}^{0
 u}\simeq 2\;10^{25}$ y (HM) $\sim m_{
 u}\simeq [0.25-0.5]$ eV
- Running an ideal experiment with t=5 y, M=10 kg of ⁷⁶Ge, $\varepsilon=100\%$ efficiency (exposure $M \times t=50$ kg.y) :

$$N_{decay}^{0\nu} = \frac{N_A M}{A} \frac{\varepsilon t \log 2}{T_{1/2}^{0\nu}}$$

gives: $N_{decay}^{0
u}\simeq 14$ expected decays

 \bullet But typical natural radioactivity ($^{232}\text{Th},~^{238}\text{U}.\,.$) is \simeq 1-100 Bq/kg :

$$N_{decay}^{radioactivity} = a \times t \times M$$

and gives : $N_{decay}^{radioactivity} \simeq [1 - 100] \; 10^9$ nasty decays !!!

Radioactivity background is the enemy !

Background sources...

- Natural radioactivity energy scale : 1-5 MeV $\simeq Q_{etaeta}$
- $^{232}{\rm Th},\,^{238}{\rm U},\,^{235}{\rm U}$ chains : plenty of $\alpha,\,\beta$ and γ emitters
- Special mention for $^{226}\rm{Ra}$ ($T_{1/2}{=}1800$ y) and $^{222}\rm{Rn}$ (gas, $T_{1/2}{=}3.8$ days) and (β/α) decay products
- Very special mention for 214 Bi ($Q_{\beta}{=}3.2$ MeV) and 208 TI ($Q_{\beta}{=}5$ MeV, $E_{\gamma}{=}2.614$ MeV)
- Fission neutrons from surrounding rocks $\sim (n, \gamma)$ reactions (> 3 MeV)
- Also cosmic muons :
 - spallation and thus unstable cosmogenics isotopes
 - \sim bremstrahlung \sim high-energy $\gamma \sim e^-$, e^+
- Possible artificial radioactive contaminants may also be a problem.
- $2\nu\beta\beta$ decays (ultimate background in some cases).

Recipe for a DBD experiment

How to make it ?

- ullet Collect a large mass of some enriched isotope(s) as the DBD source (\gtrsim 100 mol)
- Purify this DBD source with some radiochemistry processes (for example removing Radium to break the U decay chain)
- Select ultra-low radioactivity materials to build the ββ detector (1μBq/kg 1mBq/kg, remove Radon from gas)
- Bury the experimental setup deep underground (≳1000 m.w.e, protection against cosmic rays)
- Shield against environmental radioactivity (n, γ , μ , ²²²Rn)
- Invent some technique(s) to discriminate 0
 uetaeta signal from background(s)

Recipe for a DBD experiment

How to make it ?

- ullet Collect a large mass of some enriched isotope(s) as the DBD source (\gtrsim 100 mol)
- Purify this DBD source with some radiochemistry processes (for example removing Radium to break the U decay chain)
- Select ultra-low radioactivity materials to build the ββ detector (1μBq/kg 1mBq/kg, remove Radon from gas)
- Bury the experimental setup deep underground (≳1000 m.w.e, protection against cosmic rays)
- Shield against environmental radioactivity (n, γ , μ , ²²²Rn)
- Invent some technique(s) to discriminate $0
 u\beta\beta$ signal from background(s)
- Switch on the detector, seat down and wait...wait...wait...

Recipe for a DBD experiment

Experimental questions

- What isotopes to be used for DBD search ?
- What technology to *discover/invalidate* $0\nu\beta\beta$ process ?
- How to improve the radiopurity of the experimental setup and background rejection performance ?
- How does it cost in terms of time, effort, money... hope ?
- How does it scale for a future larger experiment with improved sensitivity ?
- Does a best experimental approach exist ?

lsotopes of experimental interest

lsotope	$Q_{\beta\beta}$	Nat. abund.	$G_{0\nu} (\tilde{G}_{0\nu}^{76})$	$M_{0\nu}^{a}$	$T_{1/2,exp}^{2\nu}$
	[keV]	(enr.) [%]	$[10^{-14} (y^{-1})]^a$		[10 ¹⁹ (y)]
⁴⁸ Ca	4270	0.187 (73 ^b)	6.35 (16.15)	0.85 - 2.37	4.4 ^e
⁷⁶ Ge	2039	7.83 (86°)	0.623 (1)	2.81 - 7.24	155 ^f
⁸² Se	2995	8.73 (97 ^b)	2.70 (4)	2.64 - 6.46	9.6 ^e
⁹⁶ Zr	3350	2.8 (57 ^b)	5.63 (7.1)	1.56 - 5.65	2.35°
¹⁰⁰ Mo	3034	9.63 (99 ^b)	4.36 (5.3)	3.103 - 7.77	0.716 ^e
¹¹⁶ Cd	2802	7.49 (93 ^b)	4.62 (4.8)	2.51 - 4.72	2.88°
¹³⁰ Te	2527	34.08 (90 ^b)	4.09 (3.8)	2.65 - 5.50	70 ^e
¹³⁶ Xe	2480	8.857 (80 ^d)	4.31 (3.9)	1.71 - 4.2	211 ^g
¹⁵⁰ Nd	3367	5.6 (91 ^b)	19.2 (15.6)	1.71 - 3.7	0.91 ^e

Q: below 2.6 MeV γ -line (²⁰⁸Tl), below 3.2 MeV Q-value (²¹⁴Bi) $\tilde{G}_{0\nu}^{76} = (G_{0\nu}/A)$ then normalized to the value for 76 Ge $M_{0\nu}$: small theor. value or difficult to compute...

^a from PRD 83, 113010 (2011)

 b achieved in NEMO-3, c achieved in HM, d achieved in EXO-200

^e from NEMO3 (see TAUP 2011), ^f from HM, ^g from EXO-200 (arXiv-1108.4193)

• Use a Calorimeter : measurement of the energy sum of both electrons emitted in $\beta\beta$ processes

- Use a Calorimeter : measurement of the energy sum of both electrons emitted in ββ processes
- A critical criterion for signal/background discrimination in the Q_{ββ} ROI

- Use a Calorimeter : measurement of the energy sum of both electrons emitted in ββ processes
- A critical criterion for signal/background discrimination in the Q_{ββ} ROI
- High energy resolution is a must

9 / 22

 $+E_2$

- Use a Calorimeter : measurement of the energy sum of both electrons emitted in $\beta\beta$ processes
- A critical criterion for signal/background discrimination in the Q_{ββ} ROI
- High energy resolution is a must
- Introducing the background index: typical $B \sim 0.1 - 0.001$ counts/keV/kg/y

- Use a Calorimeter : measurement of the energy sum of both electrons emitted in ββ processes
- A critical criterion for signal/background discrimination in the Q_{ββ} ROI
- High energy resolution is a must
- Introducing the background index: typical $B \sim 0.1 - 0.001$ counts/keV/kg/y
- Additional criteria : particle identification $(\gamma, e^-, e^+, \alpha...)$

Experimental half-life sensitivity

• Background-free (lower limit):

$$T_{1/2}^{0\nu} \gtrsim \frac{N_A \ln 2}{n_\sigma} \left(\frac{a \times \varepsilon}{A}\right) M \times t$$

• Background limited (lower limit):

 $T_{1/2}^{0\nu} \gtrsim \frac{N_A \ln 2}{n_{\sigma}} \left(\frac{a \times \varepsilon}{A}\right) \sqrt{\frac{M \times t}{B \times \Delta E}}$

where :

- n_{σ} the number of standard deviations at desired CL,
- a the isotopical abundance,
- *M* the mass of the source,
- t the measuring time,
- arepsilon the efficiency,
- ΔE the energy resolution at peak position (ROI),

```
B the background index in the ROI (counts/keV/kg/y).
```

 $T_{1/2}^{0\nu}$ A.U. (typically 10²⁵ y)

Calorimeter

- Detector = DBD source
- Excellent $\Delta E/E$
- Large efficiency
- Compact
- Address only one DBD isotope (⁷⁶Ge, ¹³⁰Te...)
- Limited particle identification
- Techniques: Semiconductor, Bolometer, (Liquid-)Scintillator (¹³⁶Xe, ¹⁵⁰Nd)

Tracker

- Detector \neq DBD source
- Limited $\Delta E/E$
- Limited efficiency
- Not so compact
- Isotope flexibility (¹⁰⁰Mo, ⁸²Se, ¹⁵⁰Nd, ⁴⁸Ca...)
- Particle identification and event topology
- Probe \neq mechanisms
- Techniques: Drift chamber, TPC

Calorimeter

- Detector = DBD source
- Excellent $\Delta E/E$
- Large efficiency
- Compact
- Address only one DBD isotope (⁷⁶Ge, ¹³⁰Te...)
- Limited particle identification
- Techniques: Semiconductor, Bolometer, (Liquid-)Scintillator (¹³⁶Xe, ¹⁵⁰Nd)

Tracker

- Detector \neq DBD source
- Limited $\Delta E/E$
- Limited efficiency
- Not so compact
- Isotope flexibility (¹⁰⁰Mo, ⁸²Se, ¹⁵⁰Nd, ⁴⁸Ca...)
- Particle identification and event topology
- Probe \neq mechanisms
- Techniques: Drift chamber, TPC

Hybrid

- Elements (best) of both
- Gaseous (Xe) TPC
- Pixelated calorimeter (CdZnTe)

It there a "best" technique for DBD ?

 Each technique has its own problems in terms of source enrichment, source purification and, last but definitively not the least, background(s)

It there a "best" technique for DBD ?

- Each technique has its own problems in terms of source enrichment, source purification and, last but definitively not the least, background(s)
- None is zero-background experiment (but some could pretend to be...)

It there a "best" technique for DBD ?

- Each technique has its own problems in terms of source enrichment, source purification and, last but definitively not the least, background(s)
- None is zero-background experiment (but some could pretend to be...)
- Each realizes a kind of compromise

It there a "best" technique for DBD ?

- Each technique has its own problems in terms of source enrichment, source purification and, last but definitively not the least, background(s)
- None is zero-background experiment (but some could pretend to be...)
- Each realizes a kind of compromise
- Some approaches exist to get the best available...

• \sim 1990-2000 : HM experiment (⁷⁶Ge)

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

- \sim 1990-2000 : HM experiment (⁷⁶Ge)
- ${\sim}2000\text{--}2010$: ${\simeq}10~\text{kg}$
 - ▶ Cuoricino (¹³⁰Te, 2008)
 - NEMO3 (¹⁰⁰Mo, 2011)

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

- \sim 1990-2000 : HM experiment (⁷⁶Ge)
- \sim 2000-2010 : \simeq 10 kg
 - ▶ Cuoricino (¹³⁰Te, 2008)
 - NEMO3 (¹⁰⁰Mo, 2011)
- $\sim 2011+$: New generation experiments $\simeq 10-100 \text{ kg}$ First stimulating results :
 - ► EXO200 (¹³⁶Xe)
 - ► Kamland-ZEN (¹³⁶Xe)

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

- \sim 1990-2000 : HM experiment (⁷⁶Ge)
- \sim 2000-2010 : \simeq 10 kg
 - Cuoricino (¹³⁰Te, 2008)
 - NEMO3 (¹⁰⁰Mo, 2011)
- $\sim 2011+$: New generation experiments $\simeq 10-100 \text{ kg}$ First stimulating results :
 - ► EXO200 (¹³⁶Xe)
 - Kamland-ZEN (¹³⁶Xe)
- \rightarrow 2015 : Start to investigate IH region

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

- \sim 1990-2000 : HM experiment (⁷⁶Ge)
- \sim 2000-2010 : \simeq 10 kg
 - Cuoricino (¹³⁰Te, 2008)
 - NEMO3 (¹⁰⁰Mo, 2011)
- $\sim 2011+$: New generation experiments $\simeq 10-100 \text{ kg}$ First stimulating results :
 - ► EXO200 (¹³⁶Xe)
 - Kamland-ZEN (¹³⁶Xe)
- \rightarrow 2015 : Start to investigate IH region
- Beyond 2015: cover IH ? ~100-1000 kg

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

Next generation of experiments

13 / 22

・ 同 ト ・ ヨ ト ・ ヨ ト

GERDA – Calorimeter, ⁷⁶Ge

- Bare detectors in liquid argon for effective background suppression
- Re-use HM & IGEX crystals
- Phase 1 data-taking : 18 kg ^{enr}Ge
- Sensitivity to Klapdor claim soon
- ⁴²Ar/⁴²K problem now solved
- Phase 1 : $B\sim$ 0.02 counts/keV/kg/y
- Phase 2 target : $B \sim 10^{-3}$ counts/keV/kg/y
- See also the MAJORANA project

CUORE – Calorimeter, ¹³⁰Te

- ^{nat} Te bolometer experiment (¹³⁰ Te, 34% natural abundance)
- Te02 crystal: low heat capacity, high intrinsic radio-purity
- Operated at 8-10 mK
- 19 towers \sim 200 kg $^{130}{
 m Te}$
- Background target : 10-100 smaller than CUORICINO $B \sim 5 \ 10^{-2} -5 \ 10^{-3}$ counts/keV/kg/y
- 2011-2018 : t=5 year $< m_{
 u} > \simeq 40-100$ meV

SuperNEMO – Calorimeter+Tracker, ⁸²Se

- Tracker/Calorimeter ala NEMO3 experiment
- Demonstrator module: 7 kg of ⁸²Se (×2.5 y)
- Prove $B \sim 10^{-4}$ counts/keV/kg/y
- Limit: $T_{1/2}^{0
 u} \sim 6.5 \ 10^{24}$ y
- Construction started, running 2015-2016 (LSM)
- Prove scalability for a full-scale 20 modules with : 100 kg \times 2016-2020 $T_{1/2}^{0\nu} \sim 10^{26}$ y, $< m_{\nu} > =$ 40-100 meV
- R&D for ⁴⁸Ca, ¹⁵⁰Nd

SuperNEMO – Calorimeter+Tracker, ⁸²Se

- Tracker/Calorimeter ala NEMO3 experiment
- Demonstrator module: 7 kg of ⁸²Se (×2.5 y)
- Prove $B \sim 10^{-4}$ counts/keV/kg/y
- Limit: $T_{1/2}^{0
 u} \sim 6.5 \ 10^{24}$ y
- Construction started, running 2015-2016 (LSM)
- Prove scalability for a full-scale 20 modules with : 100 kg \times 2016-2020 $T_{1/2}^{0\nu} \sim 10^{26}$ y, $< m_{\nu} > =$ 40-100 meV

• R&D for ⁴⁸Ca, ¹⁵⁰Nd

EXO-200 – Calorimeter, ¹³⁶Xe

Enriched Xenon Observatory

Liquid-xenon TPC with ionisation & scintillation readout

Fiducial mass of 79.4 kg of ¹³⁶Xe for the 0vββ search.

KamLAND-ZEN – Calorimeter, ¹³⁶Xe

KamLAND-Zen

SNO+ - Calorimeter, ¹⁵⁰Nd

Reconstructed Energy (MeV)

5th October 2012

hold-down ropes

Detectors for Neutrinoless Double-Beta Decay

19

4 注入

- DBD physics is a major concern for particle physics :
 - Lepton number non conservation
 - Majorana neutrino
 - Neutrino mass, "exotic" weak coupling, SUSY
- \bullet Interplay with other ν mass measurements, hierarchy problem and oscillation experiments
- A new generation experiments (10-100kg) have started or will within few years
 - ► We are entering the era of 100 kg scale DBD experiments
 - Different isotopes, techniques, mass and backgrounds
 - Lots of experimental efforts are done to improve, step by step, the sensitivity of DBD detectors
 - Some very interesting results are expected within a few years (GERDA, EXO, KAMLAND, SNO+, CUORE...SuperNEMO...)
 - ▶ We need a few years to make our mind about the best way(s), maybe 1-2 techniques remaining in the future (2020+)
 - In the meanwhile, some R&D programs with (promising) novel techniques has started (scintillating bolometers, tracker crystals, gas TPC...)

• After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far

A 34 b

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)

A 34 b

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However : DBD physics MUST be investigated (and supported) by the scientific community

きょう そうよ

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However : DBD physics MUST be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]

ほん 不良ん

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However : DBD physics MUST be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]
 - Despite funding issues [another kind of nightmare]

化原本 化原本

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However : DBD physics MUST be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]
 - Despite funding issues [another kind of nightmare]
 - Despite maybe there are no chance to go further (IH, NH) but we still don't know

A 3 5 4 3 5 4

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However : DBD physics MUST be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]
 - Despite funding issues [another kind of nightmare]
 - Despite maybe there are no chance to go further (IH, NH) but we still don't know
 - Thanks to the motivation of many skilled groups worldwide

4 E 5 4 E 5

- After 10 years of aggressive statements about some future ton scale experiments and claims for efficient background reduction with existing technologies, the new generation experiments are now facing the real : background exists !
- No technique has proven its scalability to 1 ton (IH) so far
- No technique has even proven/reached its background target for the 100 kg scale (QD)
- However : DBD physics MUST be investigated (and supported) by the scientific community
 - Despite the background challenge it is [a kind of nightmare]
 - Despite funding issues [another kind of nightmare]
 - Despite maybe there are no chance to go further (IH, NH) but we still don't know
 - Thanks to the motivation of many skilled groups worldwide
- Message for the newborn LIO : please consider carefully to join some DBD experimental program !

4 E 5 4 E 5

Thanks (for stolen slides and pictures)

- David Waters, UCL, Batavia, NNN 2012, http://conferences.fnal.gov/nnn12/
- Fabrice Piquemal, LSM, Kyoto, Neutrino 2012, http://neu2012.kek.jp/

۰. .

Apologies and also best wishes for

- AMoRE (¹⁰⁰ Mo)
- CANDLES (⁴⁸Ca)
- COBRA (¹¹⁶Cd)
- DCBA (¹⁰⁰Mo/¹⁵⁰Nd)
- LUCIFER(^{Se}82/¹⁰⁰Mo)
- MAJORANA (⁷⁶Ge)
- MOON (¹⁰⁰ Mo)
- NEXT (¹³⁶Xe)
- XMASS (¹³⁶Xe)
- ZnMo4 (¹⁰⁰Mo), CdMo4 (¹¹⁶Cd)...