Neutrino oscillations: phenomenological overview

Neutrinos at the forefront of elementary particle physics and astrophysics, Lyon, 22-24 Oct 2012

Thomas Schwetz

Introduction

- Three-flavour analysis based on post-Neutrino2012 data
 - θ_{13} (dependence on reactor fluxes) • non-maximality and octant of θ_{23}
 - C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T.S., I 209.3023

SBL anomalies and eV-scale sterile neutrinos work in prep. with J. Kopp, M. Maltoni, P. Machado

D.Wark: "Better trust high-significant result from one experiment than low-significant result from global fit."

- D.Wark: "Better trust high-significant result from one experiment than low-significant result from global fit."
- Better trust high-significant result.

- D.Wark: "Better trust high-significant result from one experiment than low-significant result from global fit."
- Better trust high-significant result.
- A. Rubbia (quoting E. Lisi): "Global fits cannot replace real data."

- D.Wark: "Better trust high-significant result from one experiment than low-significant result from global fit."
- Better trust high-significant result.
- A. Rubbia (quoting E. Lisi): "Global fits cannot replace real data."
- Global fits do not attempt to replace real data but get out the most of data.

Global data on neutrino oscillations

from various neutrino sources and vastly different energy and distance scales:

- SuperK, SNO, Borexino
- KamLAND, CHOOZ

SuperKamiokande

K2K, MINOS, T2K

- global data fits nicely with the 3 neutrinos from the SM
- \blacktriangleright a few "anomalies" at 2-3 σ : LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar neutrino spectrum

Leading order oscillation picture

Dominant effective 2-flavour oscillation modes:

schematic picture of 3-flavour oscillation parameters:

Effects $\nu_2^{v_2}$ **transitions of** $\nu_e^{v_1}$ involving Δm_{31}^2 :

ν_e disappearance at reactors with L ≃ 1 km
 "clean" measurment of θ₁₃: P ≈ 1 − sin² 2θ₁₃ sin²(Δm²₃₁L/4E)
 ν_μ → ν_e transitions at accelerator experiments complicated function of all osc parameters (CP phase δ)

Huber, Lindner, TS, Winter, 09

 ν_{τ}

The θ₁₃ revolution see talks by D.Wark, A. Cabrera

- Around June 2011: 6 events in T2K (1.5 \pm 0.3 bkg for $\theta_{13} = 0$): 2.5 σ
 - global fits gave >3σ for the first time Fogli et al, 1106.6028;TS,Tortola,Valle 1108.1376
 - after ICHEP2012: 11 events in T2K (3.2 \pm 0.4 bkg for $\theta_{13} = 0$): 3.2 σ
- DoubleChooz (11.12), DayaBay (12.03), RENO (12.04)
- post-Neutrino2012: $\theta_{13} = 0$ disfavored at $\Delta \chi^2 \approx 100$ in the global fit

- to predict the v
 _e flux from nuclear reactors one has to convert the measured e⁻ spectra from ²³⁵U, ²³⁹Pu, ²⁴¹Pu into neutrino spectra Schreckenbach et al., 82, 85, 89
- recent improved calculation Mueller et al., 1101.2663 ~ 3% higher fluxes (ab initio calculations + virtual branches for missing part)
- confirmed by independent calculation P. Huber, 1106.0687 (virtual branches)
- increase of predicted number of neutrino-induced events compared to old flux calculations:

²³⁵ U	²³⁹ Pu	²⁴¹ Pu	²³⁸ U	
3.7%	4.2%	4.7%	9.8%	

- SBL reactor data (L < 100m) in tension with predicted flux $f = 0.935 \pm 0.024$ (different from 1 @ 2.7 σ)
- systematics?
 - normalization of ILL electron spectra
 - neutron lifetime (use 2012 PDG value)
- sterile neutrinos at the eV scale?

- SBL reactor data (L < 100m) in tension with predicted flux $f = 0.935 \pm 0.024$ (different from 1 @ 2.7 σ)
- systematics?
 - normalization of ILL electron spectra
 - neutron lifetime (use 2012 PDG value)
- sterile neutrinos at the eV scale?

The reactor anomaly and the θ_{13} determination

T. Schwetz

10

θ₁₃ summary

two extreme assumptions on reactor fluxes:

use fluxes from Huber, 1106.0687 without SBL reactor data

 $\sin^2 \theta_{13} = 0.025 \pm 0.0023 - \theta_{13} = (9.2^{+0.42}_{-0.45})^{\circ} / \sin^2 2\theta_{13} = 0.099 \pm 0.009$

- leave react flux free and include SBL data $\sin^2 \theta_{13} = 0.023 \pm 0.0023$ $\theta_{13} = (8.6^{+0.44}_{-0.46})^\circ$ $\sin^2 2\theta_{13} = 0.088 \pm 0.009$
- affect global fit result at the $I\sigma$ level
- dependence on solar model is not visible in the global fit
- $\theta_{13} = 0$ disfavored at $\Delta \chi^2 \approx 100$ in global fit!

NuFIT 1.0 (2012 Sol (GS98) <u>+Kam (Húber</u> Sol (AG +Kam+RSBL (flux free) T2K ν_{\bullet} app Minos ν_e app Chooz+PV (Huber) \Box Chợ ϕ z+PV+RSBL (flux free) ∎∎ DChooz (Huber) Dchooz+RSBL (flux free) Daya Bay → Reho GLOBAL (Huber) GLOBAL with RSBL and flux free 0 0.02 0.04 0.06 0.08

sin'v

Measuring Δm^2_{31} with reactors

will improve with spectral data from DayaBay / RENO

Measuring Δm^2_{31} with reactors

will improve with spectral data from DayaBay / RENO

On non-maximal 23 mixing Contours

Nichol (MINOS), talk at Neutrino2012

On non-maximal 23 mixing

global data without atmospheric (MINOS and T2K disappearance most important)

degeneracy between the two θ_{23} octants

 $sin^2 \theta_{23} \approx 0.40$ $sin^2 \theta_{23} \approx 0.62$

On non-maximal 23 mixing

global data without atmospheric (MINOS and T2K disappearance most important)

degeneracy between the two θ_{23} octants

 $sin^2 \theta_{23} \approx 0.40$ $sin^2 \theta_{23} \approx 0.62$

neglecting Δm_{21}^2 : $P_{\mu\mu} \approx 1 - 4|U_{\mu3}|^2(1 - |U_{\mu3}|^2)\sin^2\frac{\Delta m_{atm}^2L}{4E} \Rightarrow \sin^2\theta_{23} = \frac{|U_{\mu3}|^2}{\cos^2\theta_{13}}$ slight shift to larger values of $\sin^2\theta_{23}$

Octant degeneracy and LBL appearance

Fogli, Lisi, hep-ph/9604415

$$\begin{split} P_{\mu e} &\simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2 (1-A)\Delta}{(1-A)^2} \\ &+ \sin 2\theta_{13} \hat{\alpha} \sin 2\theta_{23} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\Delta + \delta_{\rm CP}) \\ &+ \hat{\alpha}^2 \cos^2 \theta_{23} \frac{\sin^2 A\Delta}{A^2} \end{split}$$
with
$$\Delta &\equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}}, \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sin 2\theta_{12}, \quad A \equiv \frac{2E_{\nu}V}{\Delta m_{31}^2}$$

- for large θ_{13} the leading term depends on octant
- beam+reactor combination may be sensitive to octant
 Minakata et al. hep-ph/021111; McConnel, Shaevitz, hep-ex/0409028

Octant degeneracy and LBL appearance

16

Global fit ~2020 - θ_{23} octant final exposure of T2K, NOvA, DayaBay combined

3-flavor effects in atmospheric neutrinos

excess in electron-like events:

$$\begin{split} \frac{N_e}{N_e^0} &-1 \simeq (r \, s_{23}^2 - 1) \, P_{2\nu}(\Delta m_{31}^2, \theta_{13}) & \theta_{13} \text{-effects} \\ &+ (r \, c_{23}^2 - 1) \, P_{2\nu}(\Delta m_{21}^2, \theta_{12}) & \Delta m_{21}^2 \text{-effects} \\ &- 2 s_{13} s_{23} c_{23} \, r \, \text{Re}(A_{ee}^* A_{\mu e}) & \text{interference: } \delta_{\text{CP}} \end{split}$$

$$r = r(E_{\nu}) \equiv rac{F_{\mu}^0(E_{\nu})}{F_e^0(E_{\nu})}$$
 $r \approx 2$ (sub-GeV)
 $r \approx 2.6 - 4.5$ (multi-GeV)

3-flavor effects in atmospheric neutrinos

8

The octant and atmospheric neutrino data

$\Delta m^2_{31,32}$ and the mass ordering

Prospects for mass ordering

Relatively large value of θ_{13} opens exciting possibilities maybe even before experiments like HyperK, LAGUNA/LBNO, LBNE

- atmospheric neutrinos in PINGU Akhmedov, Razzaque, Smirnov, 1205.7071 talk by Ken Clark
- large-scale reactor experiment at ~50 km e.g. Petcov, Piai, hep-ph/0112074 DayaBay-II related studies
- atmospheric neutrinos in magnetized detector INO project; Blennow, TS, 1203.3388
- Supernova? talk by Pasquale Serpico tomorrow

	NuFIT 1.0 (20)12)					
L			Free Fluxes +	- RSBL	Huber Fluxes, no RSBL		
			bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 heta_{12}$	(0.30 ± 0.013	$0.27 \rightarrow 0.34$	0.31 ± 0.013	$0.27 \rightarrow 0.35$	
	$\theta_{12}/^{\circ}$		33.3 ± 0.8	$31 \rightarrow 36$	33.9 ± 0.8	$31 \rightarrow 36$	
	$\sin^2 heta_{23}$	0.41^{+}_{-}	${}^{0.037}_{0.025} \oplus 0.59 {}^{+0.021}_{-0.022}$	0.34 ightarrow 0.67	$0.41^{+0.030}_{-0.029} \oplus 0.60^{+0.020}_{-0.026}$	0.34 ightarrow 0.67	
	$ heta_{23}/^{\circ}$	40.0	$0^{+2.1}_{-1.5} \oplus 50.4^{+1.2}_{-1.3}$	$36 \rightarrow 55$	$40.1^{+2.1}_{-1.7} \oplus 50.7^{+1.1}_{-1.5}$	$36 \rightarrow 55$	
	$\sin^2 heta_{13}$	0.	023 ± 0.0023	0.016 ightarrow 0.030	0.025 ± 0.0023	$0.018 \rightarrow 0.033$	
	$\bullet \theta_{13}/^{\circ}$		$8.6_{-0.46}^{+0.44}$	$7.2 \rightarrow 9.5$	$9.2^{+0.42}_{-0.45}$	$7.7 \rightarrow 10.$	
•	$-\delta_{\mathrm{CP}}/^{\circ}$		300_{-138}^{+66}	$0 \rightarrow 360$	298^{+59}_{-145}	$0 \rightarrow 360$	
	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$,	7.50 ± 0.185	7.00 ightarrow 8.09	$7.50^{+0.205}_{-0.160}$	$7.04 \rightarrow 8.12$	
•	$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2}$ (N)		$2.47^{+0.069}_{-0.067}$	$2.27 \rightarrow 2.69$	$2.49^{+0.055}_{-0.051}$	$2.29 \rightarrow 2.71$	
($\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$		$-2.43^{+0.042}_{-0.065}$	$-2.65 \rightarrow -2.24$	$-2.47^{+0.073}_{-0.064}$	$-2.68 \rightarrow -2.25$	

C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T.S., 1209.3023

 $\vdash \bullet \vdash$

	Free Fluxes +	RSBL		
	bfp $\pm 1\sigma$	3σ range		
$\sin^2 heta_{12}$	0.30 ± 0.013	$0.27 \rightarrow 0.34$		
$\theta_{12}/^{\circ}$	33.3 ± 0.8	$31 \rightarrow 36$		
$\sin^2 heta_{23}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$	0.34 ightarrow 0.67		
$ heta_{23}/^{\circ}$	$40.0^{+2.1}_{-1.5} \oplus 50.4^{+1.2}_{-1.3}$	$36 \rightarrow 55$		/
$\sin^2 heta_{13}$	0.023 ± 0.0023	0.016 ightarrow 0.030		Π
$\theta_{13}/^{\circ}$	$8.6^{+0.44}_{-0.46}$	$7.2 \rightarrow 9.5$		• ر
$\delta_{ m CP}/^{\circ}$	300_{-138}^{+66}	$0 \rightarrow 360$		<u> </u>
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	7.50 ± 0.185	$7.00 \rightarrow 8.09$	www.nu-	tit
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2}$ (N)	$2.47^{+0.069}_{-0.067}$	$2.27 \rightarrow 2.69$		
$\frac{\Delta m_{32}^2}{10^{-3} \text{ eV}^2} \text{ (I)}$	$-2.43^{+0.042}_{-0.065}$	$-2.65 \rightarrow -2.24$		

Hints for eV sterile neutrinos

- Reactor anomaly (\overline{v}_e disappearance)
- Gallium anomaly (ve disappearance)
- LSND ($\overline{v}_{\mu} \rightarrow \overline{v}_{e} a p p earance$)
- MiniBooNE ($\overline{v}_{\mu} \rightarrow \overline{v}_{e}, v_{\mu} \rightarrow v_{e} a p pearance$)

Can they all be consistent and respect bounds on eV-scale oscillations?

will not speak about cosmological implications, see talks by G. Miele, N. Saviano, L. Verde, C. Giunti on Wed

- SBL reactor data (L < 100m) in tension with predicted flux $f = 0.935 \pm 0.024$ (different from 1 @ 2.7 σ)
- systematics?
 - normalization of ILL electron spectra
 - neutron lifetime (use 2012 PDG value)
- sterile neutrinos at the eV scale?

The reactor anomaly and sterile neutrinos

	$\sin^2 2\theta_{14}$	$\Delta m_{41}^2 [\mathrm{eV}^2]$	$\chi^2_{\rm min}/{\rm dof}~({\rm GOF})$	$\Delta \chi^2_{\rm no-osc}$ (CL)
SBLR rates only	0.13	0.44	11.5/17~(83%)	11.4/2~(99.7%)
SBLR incl. Bugey3 spectr.	0.10	1.75	58.3/74~(91%)	9.0/2~(98.9%)

The Gallium anomaly

combined fit: $\chi^2_{min} = 2.3/3 \text{ dof} \quad r = 0.84^{+0.054}_{-0.051} \quad \Delta \chi^2_{r=1} = 8.7 (2.9\sigma)$ T. Schwetz see also Giunti, Laveder, 1006.3244 30

Global data on ve disappearance

▶ ν_e disappearance constraints from LSND and KARMEN LSND and KARMEN measure the cross section for $\nu_e + {}^{12}\text{C} \rightarrow {}^{12}\text{N} + e^-$ consistent with expectations \rightarrow limit on ν_e disappearance Conrad, Shaevitz, 1106.5552

solar neutrinos

degeneracy between θ_{13} and θ_{14} e.g., Palazzo, 1105.1705

no oscillations excluded at 99.8% CL

impact of eV oscillations on θ_{13} determination

Appearance results from MiniBooNE Chris Polly @ Neutrino2012, 1207.4809

Simultaneous 3+1 fit to v and anti-v data

Appearance results from MiniBooNE Chris Polly @ Neutrino2012, 1207.4809

Simultaneous 3+1 fit to v and anti-v data

Fitting all together?

3+1 SBL oscillations

appearance

$$P_{\mu e} = \sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \qquad \sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$

disappearance ($\alpha = e, \mu$)
$$P_{\alpha \alpha} = 1 - \sin^2 2\theta_{\alpha \alpha} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \qquad \sin^2 2\theta_{\alpha \alpha} = 4|U_{\alpha 4}|^2(1 - |U_{\alpha 4}|^2)$$

- effective 2-flavour oscillations
- ▶ no CP violation \rightarrow same results for $\bar{\nu}$ (LSND, MB) and ν (MB) data

Fitting all together?

3+1 SBL oscillations

appearance

$$P_{\mu e} = \sin^2 2\theta_{\mu e} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \qquad \sin^2 2\theta_{\mu e} = 4|U_{e4}|^2|U_{\mu 4}|^2$$

disappearance (
$$\alpha = e, \mu$$
)

$$P_{\alpha\alpha} = 1 - \sin^2 2\theta_{\alpha\alpha} \sin^2 \frac{\Delta m_{41}^2 L}{4E} \qquad \sin^2 2\theta_{\alpha\alpha} = 4|U_{\alpha4}|^2(1 - |U_{\alpha4}|^2))$$

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu \mu}$$

 $\nu_{\mu} \rightarrow \nu_{e}$ app. signal requires also signal in both, ν_{e} and ν_{μ} disappearance (appearance mixing angle quadratically suppressed)

 $v_e \ disap \ vs \ v_\mu \rightarrow v_e \ appearance$

 reactor+Ga anomalies and LSND+MB hints are perfectly consistent, BUT...

Constrains on v_µ disappearance

 CDHS, atmospheric neutrinos, MINOS, MiniBooNE

additional constraints from IceCube (not used)

Nunokawa, Peres, Zukanovich, 03, Coubey, 07, Razzaque, Smirnov, 11, 12, Esmaili, Halzen, Peres, 12

Strong tension in global data

$$\chi^2/dof (all) = 603.2 / 573 = 18\%$$

 $\chi^2/dof (disapp) = 486.3 / 505 = 72\%$
 $\chi^2/dof (app) = 97.4 / 68 = 1.1\%$

$$\chi^2_{\rm PG}/{\rm dof}\,({\rm dis}/{\rm app}) = 19.6\,/2\,0.06\%$$

J. Kopp, P. Machado, M. Maltoni, TS (to appear)

Strong tension in global data

J. Kopp, P. Machado, M. Maltoni, TS (to appear)

Strong tension in global data

there are three classes of data:

 $\begin{array}{l}
\nu_e \rightarrow \nu_e \text{ disappearance} \\
\nu_\mu \rightarrow \nu_\mu \text{ disappearance} \\
\nu_\mu \rightarrow \nu_e \text{ appearance}
\end{array}$

$$\frac{\sin^2 2\theta_{ee}}{\sin^2 2\theta_{\mu\mu}}$$
$$\frac{\sin^2 2\theta_{\mu\mu}}{\sin^2 2\theta_{\mu e}}$$

$$\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$$

- each combination of two sets is consistent (they depend on different mixing parameters)
- BUT: strong tension if all three of them are combined

Adding more sterile neutrinos?

3+2 SBL oscillations:

appearance:

$$P_{\nu_{\mu} \to \nu_{e}} = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \phi_{41} + 4 |U_{e5}|^{2} |U_{\mu5}|^{2} \sin^{2} \phi_{51} + 8 |U_{e4} U_{\mu4} U_{e5} U_{\mu5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \delta)$$

disappearance:

$$P_{\nu_{\alpha} \to \nu_{\alpha}} \approx 1 - 4 \sum_{i=4,5} |U_{\alpha i}|^2 \sin^2 \phi_{i1} - 4 |U_{\alpha 4}|^2 |U_{\alpha 5}|^2 \sin^2 \phi_{54}$$

$$\left[\phi_{ij} \equiv \Delta m_{ij}^2 L/4E\right]$$

▶ phase
$$\delta \equiv \arg \left(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^* \right) \rightarrow \text{CP violation}$$

Karagiorgi et al. 06; Maltoni, TS 07

Adding more sterile neutrinos?

3+2 SBL oscillations:

appearance:

$$P_{\nu_{\mu} \to \nu_{e}} = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \phi_{41} + 4 |U_{e5}|^{2} |U_{\mu5}|^{2} \sin^{2} \phi_{51} + 8 |U_{e4} U_{\mu4} U_{e5} U_{\mu5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \delta)$$

disappearance:

$$P_{\nu_{\alpha} \to \nu_{\alpha}} \approx 1 - 4 \sum_{i=4,5} |U_{\alpha i}|^2 \sin^2 \phi_{i1} - 4 |U_{\alpha 4}|^2 |U_{\alpha 5}|^2 \sin^2 \phi_{54}$$

$$\left[\phi_{ij} \equiv \Delta m_{ij}^2 L/4E\right]$$

► BUT: constrain $|U_{ei}|$ and $|U_{\mu i}|$ (i = 4, 5) from disappearance to be reconciled with appearance amplitudes $|U_{ei}U_{\mu i}|$

Conrad, Ignarra,
Karagiorgi,
Shaevitz, Spitz,
1207.4765

3+1 vs 3+2 $\Delta \chi^2 = 12.4$ 4 dof 98.6 % CL

3+2 vs 3+3 $\Delta \chi^2 = 3.3$ 5 dof

	$\chi^2_{min} \ (\mathrm{dof})$	$\chi^2_{null} \ (\mathrm{dof})$	P_{best}	P_{null}	χ^2_{PG} (dof)	PG (%)
3 + 1						
All	233.9 (237)	286.5(240)	55%	2.1%	54.0(24)	0.043%
App	$87.8\ (87)$	147.3 (90)	46%	0.013%	14.1 (9)	12%
Dis	128.2 (147)	$139.3\ (150)$	87%	72%	22.1 (19)	28%
$ \nu $	123.5(120)	133.4(123)	39%	25%	26.6(14)	2.2%
$\overline{\nu}$	94.8(114)	153.1 (117)	90%	1.4%	11.8(7)	11%
App vs. Dis	_	_	_	-	17.8(2)	0.013%
ν vs. $\overline{\nu}$	-	_	-	-	15.6(3)	0.14%
3+2						
All	221.5 (233)	286.5(240)	69%	2.1%	63.8(52)	13%
App	$75.0\;(85)$	147.3 (90)	77%	0.013%	16.3(25)	90%
Dis	122.6(144)	139.3(150)	90%	72%	23.6(23)	43%
ν	116.8(116)	133.4(123)	77%	25%	35.0(29)	21%
$\overline{\nu}$	90.8 (110)	153.1 (117)	90%	1.4%	15.0(16)	53%
App vs. Dis	-	-	_	-	23.9(4)	0.0082%
ν vs. $\overline{\nu}$	_	_	_	-	13.9(7)	5.3%
3+3						
All	218.2 (228)	286.5(240)	67%	2.1%	68.9(85)	90%
App	70.8~(81)	147.3 (90)	78%	0.013%	17.6~(45)	100%
Dis	120.3(141)	139.3(150)	90%	72%	24.1(34)	90%
ν	116.7(111)	133.4(123)	34%	25%	39.5(46)	74%
$\overline{\nu}$	90.6~(105)	153(117)	84%	1.4%	18.5(27)	89%
App vs. Dis	-	-	_	-	28.3~(6)	0.0081%
ν vs. $\overline{\nu}$	_	-	-	-	110.9(12)	53% 40

Conrad, Ignarra, Karagiorgi, Shaevitz, Spitz, 1207.4765

	χ^2_{min} (dof)	$\chi^2_{null} \ (\mathrm{dof})$	P_{best}	P_{null}	χ^2_{PG} (dof)	PG (%)
3+1						
All	233.9(237)	286.5(240)	55%	2.1%	54.0(24)	0.043%
App	87.8 (87)	147.3 (90)	46%	0.013%	14.1 (9)	12%
Dis	128.2(147)	139.3(150)	87%	72%	22.1(19)	28%
ν	123.5(120)	133.4(123)	39%	25%	26.6(14)	2.2%
$\overline{\nu}$	94.8(114)	153.1 (117)	90%	1.4%	11.8(7)	11%
App vs. Dis	-	-	-	-	17.8(2)	0.013%
ν vs. $\overline{\nu}$	-	-	-	-	15.6(3)	0.14%
$\boxed{3+2}$						
All	221.5(233)	286.5(240)	69%	2.1%	63.8(52)	13%
App	75.0(85)	147.3 (90)	77%	0.013%	16.3(25)	90%
Dis	122.6(144)	139.3(150)	90%	72%	23.6(23)	43%
ν	116.8 (116)	133.4(123)	77%	25%	35.0(29)	21%
$\overline{\nu}$	90.8 (110)	153.1(117)	90%	1.4%	15.0(16)	53%
App vs. Dis	-	-	-	-	23.9~(4)	0.0082%
ν vs. $\overline{\nu}$	-	-	-	-	13.9(7)	5.3%
3+3						
All	218.2 (228)	286.5(240)	67%	2.1%	68.9(85)	90%
App	70.8(81)	147.3 (90)	78%	0.013%	17.6(45)	100%
Dis	120.3(141)	139.3(150)	90%	72%	24.1(34)	90%
ν	116.7(111)	133.4(123)	34%	25%	39.5(46)	74%
$\overline{\nu}$	90.6~(105)	153(117)	84%	1.4%	18.5(27)	89%
App vs. Dis	-	_	-	-	28.3(6)	0.0081%
ν vs. $\overline{\nu}$	-	_	-	_	110.9(12)	53% 40

Adding more sterile neutrinos?

- Motivation for CP violation no longer there (MB neutrino and antinu are consistent)
- More neutrinos cannot solve the appearance-disappearance tension
- Fit to MiniB low-E data not improved in global fit
- May create more problems with cosmology

Summary - three flavour

- global fit gives determination of θ_{13} with $\Delta\chi^2 \approx 100$, small dependence on reactor anomaly remains
- indications of non-maximal value of θ₂₃ at 2σ (driven my MINOS), octant sensitvity from atmospheric data (below 1.5σ, depends on mass ordering)
- certain regions of δ_{CP} "disfavoured" at $I\sigma$

no sensitivity to mass ordering ($\Delta \chi^2 \approx 0.5$)

Summary - sterile neutrinos

- hints from reactor and Ga anomalies at $\sim 3\sigma$ (not in tension with other data)
- hints from LSND, MiniBooNE ~3.8σ
 low-E MiniB data not well fitted (few% prob)
- strong tension in global fit (constraints from ν_μ disappearance experiments)
- no significant improvement by more sterile neutrinos

additional slides

0.40

Comparison with SuperK

Itow (SuperK), talk at Neutrino2012

our SK1-4 only fit

 \rightarrow sensitivity to octant manifests itself only together with the MINOS hint for non-maximality

Impact of latest SK1-4 data in global fit

previous SKI-3 analysis by Maltoni et al.

same data but sub-GeV sample merged

adding SK4 data (+1097 days) and using new flux predictions (Honda et al 11)

 $\Delta m^2_{31,32}$ and the mass ordering

	Free Fluxes	+ RSBL	Huber Fluxes, no RSBL		
	bfp $\pm 1\sigma$ 3σ range		bfp $\pm 1\sigma$	3σ range	
$\frac{\Delta m_{31}^2}{10^{-3} \text{ eV}^2} \text{ (N)}$	$2.47^{+0.069}_{-0.067}$	$2.27 \rightarrow 2.69$	$2.49^{+0.055}_{-0.051}$	$2.29 \rightarrow 2.71$	
$\frac{\Delta m_{32}^2}{10^{-3} \ {\rm eV}^2} \ ({\rm I})$	$-2.43^{+0.042}_{-0.065}$	$-2.65 \rightarrow -2.24$	$-2.47^{+0.073}_{-0.064}$	$-2.68 \rightarrow -2.25$	

• difference between $|\Delta m^2_{31}|$ and $|\Delta m^2_{32}|$ at the level of 1σ

The CP phase and atmospheric neutrino data

LBL app + react

adding atmospheric

The CP phase and atmospheric neutrino data

